	
	ETH/RZ-2009:0025 Rev PA2

	TITAN Licensing

	 DOCPROPERTY "SubTitle" * MERGEFORMAT

	 DOCPROPERTY "DocName" * MERGEFORMAT

	
	

	

31
In general

32
Creation of the private/main key

43
Creation of the public/user key

53.1
Signing the license

63.2
Sending the mail

74
Validation of the user key

74.1
Initializing openssl

84.2
Loading the license

84.2.1
Loading the license data from the license file

104.2.2
Checking the signature of the license

104.2.3
Decode the license data

114.3
Verifying the license

134.4
Checking a specific feature

135
Limitations

1 In general

This document refers exclusively to license handling of Titan within Ericsson. For open source use, the license mechanism is disabled during build and this document has no relevance or validity.

In general the license handling of TITAN is very simple.
Basically it uses a PGP based encoding mechanism provided by openssl. TITAN has a private key which is used to generate the licenses of the user, and a public key which is used to validate the user’s license on a remote machine.
This basic system was enhanced with a web form where the users can order their licenses (but ordering via mail is still supported by license manager), this web form writes to a database that stores every data about all of the licenses generated so far.
This database is later used to generate the new licenses, and provide us with some statistics related to the usage of the licenses.
It must be noted, that the main intention behind this licensing construct was to give us a raw idea on how many people are using our product, on what platforms, and which features. Protection against unauthorized usage was not high priority.
2 Creation of the private/main key

The private key can be generated with the following command:
 openssl dsaparam -outform PEM -out parameters.pem -text -genkey 1024

This tells openssl to generate the DSA parameters into the file parameters.pem using PEM format, the keys to be used should be generated and shall be 1024, plus the generated file should hold the value of p,q and g.

The generated file will have 3 important parts:

1 P, q and g: These will have to be placed into the source code that will check the license, as we will use them to generate the DSA digest of messages.

2 DSA parameters: This part can be used later to recreate the private key. It should be saved in a separate file.

3 DSA private key: The private key. It must be saved in a separate file to be usable.

If the private key would get lost, it can be regenerated from the parameters.pem file with the command:

 openssl gendsa -out key.pem parameters.pem

Please note that the end of the generated file changes at every execution, so it is better to use a saved private key, than recreating it again and again.
3 Creation of the public/user key

In TITAN we usually generate the licenses from a database.
This database simply stores all information about every license ever issued and is based on MySQL.

This enables us to recreate every license ever released, should it be lost. Or in case of updates that require changes in the licensing (for example a new feature) we could automatically regenerate and send to the user his new updated license file.

The license file generator receives as parameter the unique identifier of the license to be generated (this is the number of the license)
 license_struct lstr;

 license_raw lraw;

 char *file_name;

 int unique_id;

 MYSQL mysql;

 int send_email;

 fputs("License generator for the TTCN-3 Test Executor.\n", stderr);

At first if checks the actual user, to ensure that only authorized people can use it, than initializes openssl (described later).

 check_user();

 init_openssl();

After openssl is initialized the license generator connects to our internal database, and retrieves the RAW information required to generate the license.

 connect_database(&mysql);

 fill_from_database(&mysql, &lraw, unique_id);

 disconnect_database(&mysql);

This RAW license data is signed and written into final license file.

 sign_license(&lraw, PRIVATE_KEY);

 file_name = mprintf(LICENSE_DIR "/license_%d.dat", unique_id);

 write_license(file_name, &lraw);

 fprintf(stderr, "License file %s was generated.\n", file_name);

After the license file was generated, the tool will load it to check its correctness, and also display on the console all information about the license file (so that the license administrator running this tool can check its validity).

 fputs("License information:\n", stderr);

 load_license_from_file(&lstr, file_name);

 Free(file_name);

 print_license(&lstr);

When the generated license file is found to be correct (and the tool is set to send a mail) it will automatically send the new license to the interested parties.

 if (send_email) {

 license_struct lstr2;

 connect_database(&mysql);

 fill_from_database_c(&mysql, &lstr2, unique_id);

 disconnect_database(&mysql);

mail_license(&lstr2, &lraw);

fputs("E-mail was sent.\n", stderr);

 /* do not free_license(lstr2) */
 }

 free_openssl();

 free_license(&lstr);

The checking of the user id is done, by checking the users (who started the license generator) against some predefined values (previously validated).
Please note that the developers of the code are not in the list, so they will not be able to test it if a new version needs to be made (They wouldn’t have access to the private key anyway).
static void check_user(void)
{

 if (geteuid() != 45719) {
 error("This program must have set-uid to user etccadmi1 (uid 45719)");
 }

 my_uid = getuid();

 switch (my_uid) {
 case 45719:

privileged_user = 1;

 case 34217:
 case 34385:
 break;
 default:
 error("You are not allowed to use this program");
 }

}
3.1 Signing the license

static void sign_license(license_raw *lptr, const char *dsa_key_file)

{

 unsigned char message_digest[20];

 SHA_CTX sha_ctx;

 unsigned int signature_len = sizeof(lptr->dsa_signature);

 DSA *dsa;

To sign the license we first have to read the file containing our private key into a DSA structure using the PEM_read_DSAPrivateKey function supported by openssl.
 FILE *fp = fopen(dsa_key_file, "r");

 if (fp == NULL) {

 error("Cannot open DSA private key file `%s' for reading: %s",

 dsa_key_file, strerror(errno));

 }

 dsa = PEM_read_DSAPrivateKey(fp, NULL, NULL, NULL);

 fclose(fp);

 if (dsa == NULL) {

 error("Cannot read DSA private key from `%s': %s",

 dsa_key_file, ERR_error_string(ERR_get_error(), NULL));

 }

Then we have to create a message digest out of the raw license data (using the Secure Hash Algorithm cryptographic hash function with 160 bit output).
This is done with the help of the SHA1_Init (creates the context), SHA1_Update (hashes the message with the context) and SHA1_Final (places the digest into its parameter, and destroys the context) functions provided by openssl.

 SHA1_Init(&sha_ctx);

 SHA1_Update(&sha_ctx, lptr, sizeof(*lptr) - sizeof(lptr->dsa_signature));

 SHA1_Final(message_digest, &sha_ctx);

 if ((int)signature_len != DSA_size(dsa)) {

error("Invalid DSA signature size: %d", DSA_size(dsa));

 }

The DSA_sign function (provided by openssl) calculates the message digest using the DSA of the private key, and places its ASN.1 DER encoded value in the dsa_signature field of the RAW license data.

 if (!DSA_sign(0, message_digest, sizeof(message_digest),

 lptr->dsa_signature, &signature_len, dsa)) {

 error("DSA signature generation failed: %s",

 ERR_error_string(ERR_get_error(), NULL));

 }

 DSA_free(dsa);

}

3.2 Sending the mail
The mail_license function composes the text of the mail to be sent to interested parties (the user, or contact personnel) and using the sendmail unix command send it (with the license file attached).
As it does not hold any interesting information the code is not copied here.
4 Validation of the user key

The validation of a license contains the following steps:

4 First we have to initialize openssl.

5 Than we load the license into a variable that we will be able to use later.

6 This variable is checked for correctness in general.

7 And finally we check if an actual feature is enabled for the user or not.

init_openssl();

load_license(&lstr);

verify_license(&lstr);

if (!check_feature(&lstr, FEATURE_LOGFORMAT)) {

 fputs("The license key does not allow the formatting of log files.\n",

 stderr);

 return EXIT_FAILURE;

}

free_license(&lstr);

free_openssl();

4.1 Initializing openssl

The initialization simply sets the random number seed required by openssl using the actual timestamp of the operating system.
The initialization has to be done in a loop as openssl will only perform correctly if it was seeded random enough (and with each iteration this randomness is increased more and more).

void init_openssl()
{
 if (!RAND_status()) {

time_t time_sec = time(NULL);

if (time_sec == (time_t)-1) {
 perror("time() system call failed");

 exit(EXIT_FAILURE);

}

RAND_seed(&time_sec, sizeof(time_sec));
 }
 while (!RAND_status()) {
#ifdef MINGW

FILETIME filetime;

GetSystemTimeAsFileTime(&filetime);

RAND_seed(&filetime.dwLowDateTime, sizeof(filetime.dwLowDateTime));
#else
 struct timeval tv;

if (gettimeofday(&tv, NULL) == -1) {

 perror("gettimeofday() system call failed");

 exit(EXIT_FAILURE);
 }

RAND_seed(&tv.tv_usec, sizeof(tv.tv_usec));
#endif
 }
 ERR_load_crypto_strings();
 /* Random seeding in OpenSSL may use some system calls that fail.
 * We should ignore these error codes in future error messages. */
 errno = 0;
}
4.2 Loading the license

The very first step to load the license is the evaluation of the TTCN3_LICENSE_FILE environmental variable, as it is the place where the location of the files can be found.

void load_license(license_struct *lptr)

{

 const char *file_name = getenv("TTCN3_LICENSE_FILE");

 if (file_name == NULL) {

 fputs("TTCN3_LICENSE_FILE environment variable is not set.\n",

 stderr);

exit(EXIT_FAILURE);

 }

 load_license_from_file(lptr, file_name);

}

Loading of the license involves 3 logical steps that has to be made:

8 The file must be read into memory in a raw data structure.

9 The signature of this raw structure has to be evaluated, to see if we can trust the data contained within or not.

10 The raw data must be decoded into its final form, in which we can use it later.

 void load_license_from_file(license_struct *lptr, const char *file_name)

{

 license_raw lraw;

 read_license(file_name, &lraw);

 check_license_signature(&lraw);

 decode_license(lptr, &lraw);

 lptr->license_file = mcopystr(file_name);

}

4.2.1 Loading the license data from the license file

Loading the license information from the file is very simple. Basically the PEM_read function provided by openssl will read the files contents into 2 character strings (name, header), and an unsigned character array (data).
We use the name of the license to check that this license was actually created by us, and assume the header to be empty.

The data array is simply copied into the raw license structure byte-by-byte (that’s why it is called RAW license information). In fact the license file is not much more than this data in a BER encoded format (to be precise the Base64-encode bersion of BER is used).
typedef struct {
 unsigned char unique_id[4];
 char licensee_name[48], licensee_email[48],
 licensee_company[48], licensee_department[16];
 unsigned char valid_from[4], valid_until[4];
 unsigned char host_id[4];
 char login_name[8];
 unsigned char from_major[4], from_minor[4], from_patchlevel[4],
 to_major[4], to_minor[4], to_patchlevel[4];
 unsigned char feature_list[4], limitation_type[4];
 unsigned char max_ptcs[4];
 unsigned char dsa_signature[48];
} license_raw;

/** Read a PEM-encoded license from a file.
 *
 * @param [in] file_name
 * @param [out] lptr filled with the decoded license information
 *
 * If the license information cannot be obtained (bad file name or wrong content),
 * terminates the program with EXIT_FAILURE. */
static void read_license(const char *file_name, license_raw *lptr)

{

 char *name = NULL;

 char *header = NULL;

 unsigned char *data = NULL;

 long len = 0;

 struct stat buf;

 FILE *fp;

 if (stat(file_name, &buf) != 0) {

 fprintf(stderr, "Cannot access license file `%s'. (%s)\n",

 file_name, strerror(errno));

exit(EXIT_FAILURE);

 }

 if (buf.st_mode & S_IFDIR) {

 fprintf(stderr, "The environment variable TTCN3_LICENSE_FILE was set "

 "to `%s', which is a directory. It must be set to the file that "

 "contains the license key.\n", file_name);

exit(EXIT_FAILURE);

 }

 fp = fopen(file_name, "r");

 if (fp == NULL) {

 fprintf(stderr, "Cannot open license file `%s' for reading. (%s)\n",

 file_name, strerror(errno));

exit(EXIT_FAILURE);

 }

 if (!PEM_read(fp, &name, &header, &data, &len)) {

 fprintf(stderr, "License file is corrupted: %s\n",

 ERR_error_string(ERR_get_error(), NULL));

exit(EXIT_FAILURE);

 }

 fclose(fp);

 if (strcmp(name, "TTCN-3 LICENSE FILE") || strcmp(header, "")) {

 fputs("License file is corrupted: invalid header.\n", stderr);

exit(EXIT_FAILURE);

 }

 if (len != sizeof(*lptr)) {

 fputs("License file is corrupted: invalid length.\n", stderr);

exit(EXIT_FAILURE);

 }

 memcpy(lptr, data, sizeof(*lptr));

 OPENSSL_free(name);

 OPENSSL_free(header);

 OPENSSL_free(data);

}

4.2.2 Checking the signature of the license

static void check_license_signature(license_raw *lptr)

{

 unsigned char message_digest[SHA_DIGEST_LENGTH];

 SHA_CTX sha_ctx;

 DSA *dsa = DSA_new();

To check the signature of the license we first create a message digest out of the raw license data (using the Secure Hash Algorithm cryptographic hash function with 160 bit output).
This is done with the help of the SHA1_Init (creates the context), SHA1_Update (hashes the message with the context) and SHA1_Final (places the digest into its parameter, and destroys the context) functions provided by openssl.

 SHA1_Init(&sha_ctx);

 SHA1_Update(&sha_ctx, lptr, sizeof(*lptr) - sizeof(lptr->dsa_signature));

 SHA1_Final(message_digest, &sha_ctx);

 dsa->p = BN_bin2bn(dsa_p, sizeof(dsa_p), NULL);

 dsa->q = BN_bin2bn(dsa_q, sizeof(dsa_q), NULL);

 dsa->g = BN_bin2bn(dsa_g, sizeof(dsa_g), NULL);

 dsa->pub_key = BN_bin2bn(dsa_pub_key, sizeof(dsa_pub_key), NULL);

We calculate the public key of TITAN out of its p,q and g parts. And with the DSA_verify function we check if the signature stored in the last 48 bytes of the RAW license data matches the message digest (using the signer’s public key)

 switch(DSA_verify(0, message_digest, sizeof(message_digest),

 lptr->dsa_signature, sizeof(lptr->dsa_signature), dsa)) {

 case 0:

fputs("License file is corrupted: invalid DSA signature.\n", stderr);

exit(EXIT_FAILURE);

 case 1:

break; /* valid signature */
 default:

fprintf(stderr, "License signature verification failed: %s\n",

 ERR_error_string(ERR_get_error(), NULL));

exit(EXIT_FAILURE);

 }

 DSA_free(dsa);

}

4.2.3 Decode the license data

Decoding the real license data from the RAW data is pretty easy: string values are stored in a \0 ended format; numbers are stored on bytes in Big-endian format.
So we just have to walk all fields, and decode them one-by-one.
typedef struct {
 char *license_file;
 int unique_id;
 char *licensee_name, *licensee_email,
 *licensee_company, *licensee_department;
 char *contact_name, *contact_email;
 int send_to;
 time_t valid_from, valid_until;
 unsigned long int host_id;
 char *login_name;
 int from_major, from_minor, from_patchlevel,
 to_major, to_minor, to_patchlevel;
 unsigned int feature_list, limitation_type;
 int max_ptcs;
} license_struct;
static void decode_license(license_struct *to, const license_raw *from)

{

 to->license_file = NULL;

 to->unique_id = decode_int(from->unique_id);

 to->licensee_name = decode_string(from->licensee_name,

 sizeof(from->licensee_name));

…

 to->feature_list = decode_int(from->feature_list);

 to->max_ptcs = decode_int(from->max_ptcs);

}

/** Big-endian decoding of a 4-byte integer */
static unsigned int decode_int(const unsigned char *from)

{

 return from[3] | (from[2] << 8) | (from[1] << 16) | (from[0] << 24);

}

/** Extract a string from a fixed-length field.
 *
 * @param from the beginning of the field
 * @param max_length the size of the field
 * @return a newly allocated string. The caller is responsible for
 * calling Free()
 *
 * Verifies that the unused portion of the field is properly zeroed out
 * (no non-NUL characters after the first NUL character). Terminates
 * the program with EXIT_FAILURE if there is trailing garbage
 * after the end of the string. */
static char *decode_string(const char *from, size_t max_length)

{

 size_t i, length;

 char *ptr;

 for (i = 0; i < max_length && from[i] != '\0'; i++);

 length = i;

 /* Verify that the tail is properly zeroed (no junk). */
 for (i++; i < max_length; i++)

if (from[i] != '\0') {

 fputs("License file is corrupted: invalid string encoding\n",

stderr);

 exit(EXIT_FAILURE);

}

 ptr = (char*)Malloc(length + 1);

 memcpy(ptr, from, length);

 ptr[length] = '\0';

 return ptr;

}

4.3 Verifying the license

To verify the license we simply check if the actual date is within the validity of the license, and if the user and/or the host computer are the ones the license was made for (the name of the user is the same as the one stored in the license).
void verify_license(const license_struct *lptr)

{

 time_t current_time = time(NULL);

 int errflag = 0;

 if (current_time < lptr->valid_from) {

 fputs("The license key is not yet valid.\n", stderr);

errflag = 1;

 }

 if (current_time > lptr->valid_until) {

 fputs("The license key has already expired.\n", stderr);

errflag = 1;

 }

 if (lptr->limitation_type & LIMIT_HOST) {

/* broken libc call gethostid() performs sign extension on some 64-bit

 * Linux platforms, thus only the lowest 32 bits are considered */

unsigned long host_id = gethostid() & 0xffffffffUL;

if (host_id != lptr->host_id) {

 fprintf(stderr, "The license key is not valid for this host "

"(%08lx).\n", host_id);

 errflag = 1;

 }

 }

 if (lptr->limitation_type & LIMIT_USER) {

uid_t process_uid = getuid();

 struct passwd *p;

setpwent();

p = getpwuid(process_uid);

if (p == NULL) {

 fprintf(stderr, "The current user ID (%d) does not have login "

"name.\n", (int)process_uid);

 errflag = 1;

} else if (strcmp(p->pw_name, lptr->login_name)) {

 /* First making a backup copy of the current login name because

 * the subsequent getpwnam() call will overwrite it. */

 char *login_name = mcopystr(p->pw_name);

 /* Another chance: Trying to map the login name of the license key

 * to a valid UID. Note that it is possible to associate several

 * login names with the same UID. */

 p = getpwnam(lptr->login_name);

 if (p == NULL || p->pw_uid != process_uid) {

fprintf(stderr, "The license key is not valid for this login "

 "name (%s).\n", login_name);

errflag = 1;

 }

 Free(login_name);

}

endpwent();

 }

 if (TTCN3_MAJOR < lptr->from_major ||

 (TTCN3_MAJOR == lptr->from_major && (TTCN3_MINOR < lptr->from_minor ||

(TTCN3_MINOR == lptr->from_minor &&

TTCN3_PATCHLEVEL < lptr->from_patchlevel))) ||

TTCN3_MAJOR > lptr->to_major ||

 (TTCN3_MAJOR == lptr->to_major && (TTCN3_MINOR > lptr->to_minor ||

(TTCN3_MINOR == lptr->to_minor &&

TTCN3_PATCHLEVEL > lptr->to_patchlevel)))) {

 fputs("The license key is not valid for this version.\n", stderr);

 errflag = 1;

 }

 if (errflag) exit(EXIT_FAILURE);

 if (lptr->valid_until - current_time < EXPIRY_WARNING * 86400) {

int expiry_days = (lptr->valid_until - current_time) / 86400 + 1;

fprintf(stderr, "Warning: The license key will expire within %d "

 "day%s.\n", expiry_days, expiry_days > 1 ? "s" : "");

 }

 /* setpwent and getpwuid calls may use some system calls that fail.
 * We should ignore these error codes in future error messages. */
 errno = 0;

}

4.4 Checking a specific feature

Checking a given feature is as simple as checking if its bit in the bit field of the features is set or not.
int check_feature(const license_struct *lptr, int feature)

{

 return (lptr->feature_list & feature) != 0;

}
Please note that the features are predefined.

#define FEATURE_ASN1

0x80

#define FEATURE_RAW

0x100

#define FEATURE_BER

0x200

…
5 Limitations

Licenses limited to a certain user are checking against the name of the user, as such they can be easily hacked by simply creating a user with the same name on any computer (or virtual computer).

Host limited licenses have several problems:

· On windows/cygwin there is no built in gethostid command, as such we have to deliver this command with TITAN. If someone would replace it with a shell script that always returns the same number, he could run TITAN on any windows/cygwin machines.

· On most of the linux versions the root user can set the hostid of the machine from software, by setting it to the number accepted by TITAN he can run TITAN on any linux machine.

· On machines that are not connected to the internet (laboratories, testbeds) the machines usually get random hostids (maybe ones that their administrator likes). As these networks are not interconnected it is not a problem for several machines to get the same host id as long as each one is in a different network. This however causes problems for the license manager as the same license might be used on several machines.

In general having host limited and user limited licenses seems to be a somewhat bad idea as this way we are not really able to get a clear picture on our users.

For example there are places where a whole team is using a central compile server that has the only license (host limited).

On the other hand there are also places where whole testbeds (several computers) are handled by the same user limited license (in this case every tester has to login as this user – usually the admin) to be able to configure the machines.
[image: image1.png]ERICSSON 2=

[image: image1.png][image: image2.png]ERICSSON 2=

