
Predictor Effects Graphics Gallery

John Fox and Sanford Weisberg

2018-12-19, minor revisions 2020-02-08

Contents

1 Introduction 2
1.1 Effects and Predictor Effect Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 General Outline for Constructing Predictor Effect Plots . . . . . . . . . . . . . . . . 7
1.3 How predictorEffect() Chooses Conditioning Predictors . . . . . . . . . . . . . . 8
1.4 The Effect() Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 The predictorEffects() Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Optional Arguments for the predictorEffect() and Effect() Functions 11
2.1 focal.levels and xlevels: Options for the Values of the Focal Predictor and Pre-

dictors in the Conditioning Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 fixed.predictors: Options for Predictors in the Fixed Group . . . . . . . . . . . . 13

2.2.1 Factor Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Numeric Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 se and vcov.: Standard Errors and Confidence Intervals . . . . . . . . . . . . . . . . 14
2.4 residuals: Computing Residuals for Partial Residual Plots . . . . . . . . . . . . . . 15

3 Arguments for Plotting Predictor Effects 15
3.1 The axes Group: Specify Axis Characteristics . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 x: Horizontal Axis Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 y: Vertical Axis Specification for Linear Models . . . . . . . . . . . . . . . . . 18
3.1.3 y: Vertical Axis Specification for Generalized Linear Models . . . . . . . . . . 20

3.2 The lines Group: Specifying Plotted Lines . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 multiline and z.var: Multiple Lines in a Plot . . . . . . . . . . . . . . . . . 23
3.2.2 col, lty, lwd, spline: Line Color, Type, Width, Smoothness . . . . . . . . . 27

3.3 The confint Group: Specifying Confidence Interval Inclusion and Style . . . . . . . 27
3.4 The lattice Group: Specifying Standard lattice Package Arguments . . . . . . . . . 29

3.4.1 key.args: Modifying the Key . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 layout: Controlling Panel Placement . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 array: Multiple Predictor Effect Plots . . . . . . . . . . . . . . . . . . . . . . 31
3.4.4 strip: Modifying the Text at the Tops of Panels . . . . . . . . . . . . . . . . 32

3.5 symbols: Plotting symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Displaying Residuals in Predictor Effect Plots 34
4.1 Using the Effect() Function With Partial Residuals . . . . . . . . . . . . . . . . . . 37

5 Polytomous Categorical Responses 38

1



6 The Lattice Theme for the effects Package 43

Abstract

Predictor effect displays visualize the response surface of complex regression models by aver-
aging and conditioning, producing a sequence of 2D line graphs, one graph or set of graphs for
each predictor in the regression problem (Fox and Weisberg, 2019, 2018). In this vignette, we
give examples of effect plots produced by the effects package, and in the process systematically
illustrate the optional arguments to functions in the package, which can be used to customize
predictor effect plots.

1 Introduction

Predictor effect plots (Fox and Weisberg, 2018) provide graphical summaries for fitted regression
models with linear predictors, including linear models, generalized linear models, linear and gener-
alized linear mixed models, and many others. These graphs are an alternative to tables of fitted
coefficients, which can be much harder to interpret than predictor effect plots. Predictor effect plots
are implemented in R in the effects package, documented in Fox and Weisberg (2019). This vignette
provides many examples of variations on the graphical displays that can be obtained with the effects
package. Many of the details, and more complete descriptions of the data sets used as examples, are
provided in the references cited at the end of the vignette.

1.1 Effects and Predictor Effect Plots

We begin with an example of a multiple linear regression, using the Prestige data set in the carData
package:

R> library("car") # also loads the carData package

R> Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof"))

R> lm1 <- lm(prestige ~ education + poly(women, 2) +

+ log(income)*type, data=Prestige)

The data, collected circa 1970, pertain to 102 Canadian occupations. The model lm1 is a linear
model with response prestige, continuous predictors income, education, and women, and the factor
predictor type, which has three levels. Before fitting the model, we reorder the levels of type as
"bc" (blue-collar), "wc" (white-collar), and "prof" (professional and managerial). The predictor
education represents itself in the linear model, and so it is both a predictor and a regressor, as
defined in Fox and Weisberg (2019, Sec. 4.1). The predictor income is represented by the regressor
log(income). The variable women, a percentage between 0 and 100, is represented by regressors that
define a polynomial of degree 2 using poly()’s default orthogonal polynomials. The variable type

is a factor with three levels, so it is represented by two dummy regressors defined by the default
contrast-generating function in R, contr.treatment(). Finally, the formula includes an interaction
between income and type, defined by multiplying the regressor for income (log(income)) by each of
the regressors that represent type.

The usual numeric summary of the fit of lm1 is a table of estimated coefficients, which we obtain
via the S() function in the car package that is similar to, but somewhat more flexible than, the
standard R summary() function:

2



R> S(lm1)

Call: lm(formula = prestige ~ education + poly(women, 2) + log(income) * type,

data = Prestige)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -137.500 23.522 -5.85 8.2e-08

education 2.959 0.582 5.09 2.0e-06

poly(women, 2)1 28.339 10.190 2.78 0.0066

poly(women, 2)2 12.566 7.095 1.77 0.0800

log(income) 17.514 2.916 6.01 4.1e-08

typewc 0.969 39.495 0.02 0.9805

typeprof 74.276 30.736 2.42 0.0177

log(income):typewc -0.466 4.620 -0.10 0.9199

log(income):typeprof -7.698 3.451 -2.23 0.0282

Residual standard deviation: 6.2 on 89 degrees of freedom

(4 observations deleted due to missingness)

Multiple R-squared: 0.879

F-statistic: 81.1 on 8 and 89 DF, p-value: <2e-16

AIC BIC

646.26 672.11

• Interpretation of the regression coefficients is straightforward only for the predictor education,
where an increase of one year of education, holding other predictors fixed, corresponds to an
estimated expected increase in the response of 2.959 units.

• Even ignoring the interaction, the log transformation complicates the interpretation of the
effect of income.

• The predictor women is represented by two regressors, so the effect of women requires examining
two coefficient estimates that are interpretable only by those knowledgeable about polynomial
regression analysis. Even if raw rather than orthogonal polynomial regressors were used, via
poly(women, 2, raw=TRUE) in place of poly(women, 2), interpretation of the effect of women
is complicated.

• Understanding the coefficients for the main effect of type depends on the contrasts used to
define the effect. The contrasts can be changed by the user, and the default contrasts in R are
different from the default contrasts used by SAS or other programs, so the coefficients cannot
be reliably interpreted without information not present in the regression summary.

• Finally, the interaction further complicates the interpretation of the effect of either income or
type, because the interaction coefficients need to be interpreted jointly with the main effect
coefficients.

Summarization of the effects of predictors using tables of coefficient estimates is often incomplete.
Effects, and particularly plots of effects, can in many instances reveal the relationship of the response
to the predictors more clearly. This conclusion is especially true for models with linear predictors
that include interactions and multiple-coefficient terms such as regression splines and polynomials,
as illustrated in this vignette.

A predictor effect plot summarizes the role of a selected focal predictor in a fitted regression
model. The predictorEffect() function is used to compute the appropriate summary of the
regression, and then the plot() function may be used to graph the resulting object, as in the
following example:

3



R> library("effects")

R> e1.lm1 <- predictorEffect("education", lm1)

R> plot(e1.lm1)

education predictor effect plot

education

pr
es

tig
e

30

40

50

60

70

 8 10 12 14 16

This graph visualizes the partial slope for education, that for each year increase in education, the
fitted prestige increases by 2.959 points, when the other predictors are held fixed. The intercept
of the line, which is outside the range of education on the graph, affects only the height of the
line, and is determined by the choices made for averaging over the fixed predictors, but for any
choice of averaging method, the slope of the line would be the same. The shaded area is a pointwise
confidence band for the fitted values, based on standard errors computed from the covariance matrix
of the fitted regression coefficients. The rug plot at the bottom of the graph shows the location of
the education values.

The information that is needed to draw the plot is computed by the predictorEffect() function.
The minimal arguments for predictorEffect() are the quoted name of a predictor in the model
followed by the fitted model object. The essential purpose of this function is to compute fitted values
from the model with education varying and all other predictors fixed at typical values (Fox and
Weisberg, 2019, Sec. 4.3). The command below displays the values of the regressors for which fitted
values are computed, including a column of 1s for the intercept:

R> brief(e1.lm1$model.matrix)

50 x 9 matrix (45 rows and 5 columns omitted)

(Intercept) education . . . log(income):typewc log(income):typeprof

1 1 6.38 2.0758 2.7979

2 1 6.58 2.0758 2.7979

3 1 6.77 2.0758 2.7979

. . .

49 1 15.80 2.0758 2.7979

50 1 16.00 2.0758 2.7979

The focal predictor education was evaluated by default at 50 points covering the observed range of
values of education. We use the brief() function in the car package to show only a few of the 50
rows of the matrix. For each value of education the remaining regressors have the same fixed values
for each fitted value. The fixed value for log(income) is the logarithm of the sample mean income,
the fixed values for the regressors for women are computed at the mean of women in the data, and
the fixed values for the regressors for type effectively take a weighted average of the fitted values

4



at the three levels of type, with weights proportional to the number of cases in each level of the
factor. Differences in the fitted values are due to education alone because all the other predictors,
and their corresponding regressors, are fixed. Thus the output gives the partial effect of education
with all other predictors fixed.

The computed fitted values can be viewed by printing the "eff" object returned by predictor-

Effect(), by summarizing the object, or by converting it to a data frame. To make the printouts
more compact, we recompute the predictor effect of education with fewer values of the focal pre-
dictor by specifying the focal.levels argument (see Section 2.1):

R> e1a.lm1 <- predictorEffect("education", lm1, focal.levels=5)

R> e1a.lm1

education predictor effect

education effect

education

6.4 8.8 11 14 16

35.864 42.965 49.474 58.351 64.268

R> summary(e1a.lm1)

education effect

education

6.4 8.8 11 14 16

35.864 42.965 49.474 58.351 64.268

Lower 95 Percent Confidence Limits

education

6.4 8.8 11 14 16

29.930 39.334 46.923 54.079 57.989

Upper 95 Percent Confidence Limits

education

6.4 8.8 11 14 16

41.798 46.596 52.026 62.623 70.548

R> as.data.frame(e1a.lm1)

education fit se lower upper

1 6.4 35.864 2.9865 29.930 41.798

2 8.8 42.965 1.8275 39.334 46.596

3 11.0 49.474 1.2842 46.923 52.026

4 14.0 58.351 2.1500 54.079 62.623

5 16.0 64.268 3.1604 57.989 70.548

The values in the column education are the values the focal predictor. The remaining columns are
the fitted values, their standard errors, and lower and upper end points of 95% confidence intervals
for the fitted values. The predictor effect plot is simply a graph of the fitted values on the vertical
axis versus the focal predictor on the horizontal axis. For a continuous focal predictor such as
education, a line, in this case, a straight line, is drawn connecting the fitted values.

We turn next to the predictor effect plot for income. According to the regression model, the
effect of income may depend on type due to the interaction between the two predictors, so simply
averaging over type would be misleading. Rather, we should allow both income and type to vary,
fixing the other predictors at their means or other typical values. By default, this computation would

5



require evaluating the model at 50 × 3 = 150 combinations of the predictors, but to save space we
will only evaluate income at five values, again using the focal.levels argument, thus computing
only 5 × 3 = 15 fitted values:

R> e2.lm1 <- predictorEffect("income", lm1, focal.levels=5)

R> as.data.frame(e2.lm1)

income type fit se lower upper

1 2000 bc 25.863 3.3037 19.299 32.428

2 8000 bc 50.142 2.3737 45.426 54.859

3 10000 bc 54.050 2.7996 48.487 59.613

4 20000 bc 66.190 4.4814 57.285 75.094

5 30000 bc 73.291 5.5708 62.222 84.360

6 2000 wc 23.290 4.5674 14.214 32.365

7 8000 wc 46.922 2.3106 42.331 51.513

8 10000 wc 50.726 3.0575 44.651 56.802

9 20000 wc 62.543 5.7716 51.075 74.011

10 30000 wc 69.455 7.4432 54.665 84.244

11 2000 prof 41.630 4.4812 32.726 50.534

12 8000 prof 55.237 2.3316 50.605 59.870

13 10000 prof 57.428 2.4552 52.549 62.306

14 20000 prof 64.231 3.6170 57.045 71.418

15 30000 prof 68.211 4.5680 59.135 77.288

To draw the predictor effects plot we recalculate the fitted values using the default focal.levels=50
to get more accurately plotted regression curves:

R> plot(predictorEffect("income", lm1),

+ lines=list(multiline=TRUE))

Here we use both the predictorEffect() and plot() functions in the same command.

income predictor effect plot

income

pr
es

tig
e

20

30

40

50

60

70

 5000 10000 15000 20000 25000

type
bc
wc
prof

6



The focal predictor income is displayed on the horizontal axis. There is a separate line shown for the
fitted values at each level of type. The lines are curved rather than straight because income appears
in the model in log-scale but is displayed in the predictor effect plot in arithmetic (i.e., dollar) scale.
The lines in the graph are not parallel because of the interaction between log(income) and type.
For type = "prof", the fitted values of prestige are relatively high for lower values of income, and
are relatively less affected by increasing values of income.

The predictor effect plot for type uses essentially the same fitted values as the plot for income,
but we now get five lines, one for each of the five (not 50) values of income selected by the predic-

torEffect() function in this context:

R> plot(predictorEffect("type", lm1), lines=list(multiline=TRUE))

type predictor effect plot

type

pr
es

tig
e

30

40

50

60

70

bc wc prof

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

income
2000
8000
10000

20000
30000

●

●

●

●

●

Because the horizontal axis is now a factor, the fitted values are displayed explicitly as points, and
the lines that join the points are merely a visual aid representing profiles of fitted values. Fitted
prestige increases with income for all levels of type, but, as we found before, when type = "prof",
fitted prestige is relatively high for lower income.

These initial examples use only default arguments for predictorEffect() and plot(), apart
from the multiline argument to plot() to put all the fitted lines in the same graph. We explain
how to customize predictor effect plots in subsequent sections of this vignette.

1.2 General Outline for Constructing Predictor Effect Plots

Using the effects package to draw plots usually entails the following steps:

1. Fit a regression model with a linear predictor. The package supports models created by lm(),
glm(), lmer() and glmer() in the lme4 package, lme() in the nlme package, and many other
regression-modeling functions (see ?Effect).

2. The regression model created in the first step is then used as input to either predictorEf-

fect(), to get the effects for one predictor, or predictorEffects, to get effects for one or
more predictors. These functions do the averaging needed to get fitted values that will ulti-
mately be plotted. There are many arguments for customizing the computation of the effects.

7



The two predictor effect functions call the more basic Effect() function, and almost all of the
material in this vignette applies to Effect() as well.

3. Use the generic plot() function to draw a graph or graphs based on the object created in Step
2.

1.3 How predictorEffect() Chooses Conditioning Predictors

Suppose that you select a focal predictor for which you want to draw a predictor effect plot. The
predictorEffect() function divides the predictors in a model formula into three groups:

1. The focal predictor.

2. The conditioning group, consisting of all predictors with at least one interaction in common
with the focal predictor.

3. The fixed group, consisting of all other predictors, that is, those with no interactions in common
with the focal predictor.

For simplicity, let’s assume for the moment that all of the fixed predictors are numeric. The predictors
in the fixed group are all evaluated at typical values, usually their means, effectively averaging out the
influence of these predictors on the fitted value. Fitted values are computed for all combinations of
levels of the focal predictor and the predictors in the conditioning group, with each numeric predictor
in the conditioning group replaced by a few discrete values spanning the range of the predictor, for
example, replacing years of education by a discrete variable with the values 8, 12, and 16 years.

Suppose that we fit a model with R formula

y ~ x1 + x2 + x3 + x4 + x2:x3 + x2:x4 (1)

or, equivalently,
y ~ x1 + x2*x3 + x2*x4

There are four predictor effect plots for this model, one for each predictor selected in turn as the
focal predictor:

Focal Conditioning Fixed
Predictor Group Group

x1 none x2, x3, x4
x2 x3, x4 x1

x3 x2 x1, x4
x4 x2 x1 x3

The predictor x1 does not interact with any of the other predictors, so its conditioning set is empty
and all the remaining predictors are averaged over; x2 interacts with both x3 and x4; x3 interacts
only with x2; and x4 interacts with x2.

1.4 The Effect() Function

Until recently, the primary function in effects for computing and displaying effects was the Effect()
function.1 Whereas the predictorEffect() function automatically determines the conditioning
group and the fixed group of predictors, the Effect() function puts that burden on the user. The
Effect() function doesn’t distinguish between between a focal predictor and conditioning predictors,
but rather only between varying (that is, focal and conditioning) and fixed predictors.

1The effects package also includes the older allEffects() function, which computes effects for each high-order
term in a model with a linear predictor. As we explain in Fox and Weisberg (2018), we prefer predictor effects to
high-order term effects, and so, although its use is similar to predictorEffects(), we won’t describe allEffects()

in this vignette. There is also an older effect() function (with a lowercase “e”), which is a less flexible version of
Effect(), and which calls Effect() to perform computations; effect() is retained only for backwards comparability.

8



Each call to predictorEffect() is equivalent to a specific call to the Effect() function as
follows. Suppose that m is the fitted model produced by the formula in (1); then, except for the ways
in which the default levels for predictors are determined:

predictorEffect("x1", m) is equivalent to Effect("x1", m);

predictorEffect("x2", m) is equivalent to Effect(c("x2", "x3", "x4"), m);

predictorEffect("x3", m) is equivalent to Effect(c("x3", "x2"), m); and

predictorEffect("x4", m) is equivalent to Effect(c("x4", "x2"), m).

The predictorEffect() function determines the correct call to Effect() based on the choice
of focal predictor and on the structure of main effects and interactions in the linear predictor for the
model. It then uses the Effect() function to do the computing. As a result, most of the arguments to
predictorEffect() are documented in help("Effect") rather than in help("predictorEffect").

1.5 The predictorEffects() Function

This function, whose name ends with the plural “effects”, computes the values needed for one or
more predictor effect plots, and by default for all of the predictors in the model. For example, the
following command produces all of the predictor effect plots for the model we fit to the Prestige

data:

R> eall.lm1 <- predictorEffects(lm1)

R> plot(eall.lm1)

9



education predictor effect plot

education

pr
es

tig
e

30

40

50

60

70

 8 10 12 14 16

women predictor effect plot

women

pr
es

tig
e

50

55

60

65

  0  20  40  60  80 100

income predictor effect plot

income

pr
es

tig
e

10
20
30
40
50
60
70
80

 500010000150002000025000

 = type bc  = type wc
10
20
30
40
50
60
70
80

 = type prof

type predictor effect plot

type

pr
es

tig
e

20
30
40
50
60
70
80

bc wc prof

● ●

●

 = income 2000

●
●

●

 = income 8000

bc wc prof

●
●

●

 = income 10000

●
● ●

 = income 20000

bc wc prof

20
30
40
50
60
70
80

●
● ●

 = income 30000

The predictor effect plots for this model are displayed in an array of graphs. The plots for income and
type have a separate panel for each level of the conditioning variable because the default argument
lines=list(multiline=FALSE) was implicitly used. Confidence bounds are shown by default when
multiline=FALSE.

The resulting object eall.lm1 is a list with four elements, where eall.lm1[[1]] is the summary
for the first predictor effect plot, eall.lm1[[2]] for the second plot, and so on. The following
equivalent commands draw the same array of predictor effect plots:

R> plot(eall.lm1)

R> plot(predictorEffects(lm1))

R> plot(predictorEffects(lm1, ~ income + education + women + type))

If you want only the predictor effect plots for type and education, in that order, you could enter

R> plot(predictorEffects(lm1, ~ type + education))

Similarly, the commands

10



R> plot(predictorEffects(lm1, ~ women))

R> plot(predictorEffects(lm1)[[3]])

R> plot(predictorEffect("women", lm1))

all produce the same graph, the predictor effect plot for women.
Predictor effect plots in an array can be a useful shortcut for drawing many graphs quickly, but

can lead to problems with the displayed graphs. For example, the horizontal axis labels for the
plot for income are overprinted, and the labels at the top of the panels for type with conditioning
variable income are larger than the available space. These problems can often be fixed using optional
arguments described later in this vignette or by plotting predictor effects individually.

2 Optional Arguments for the predictorEffect() and Effect()

Functions

This section comprises a catalog of the arguments available to modify the behavior of the predic-

torEffect() and Effect() functions. These arguments may also be specified to the predictorEf-

fects() function. The information provided by help("Effect") is somewhat more comprehensive,
if terser, explaining for example exceptions applying to "svyglm" objects or for plotting residuals.

2.1 focal.levels and xlevels: Options for the Values of the Focal Predictor and
Predictors in the Conditioning Group

Numeric predictors in the conditioning group need to be discretized to draw a predictor effect plot.
For example the predictor effect plot for type in model lm1 consists of a separate line, or a separate
panel, for each discrete value of income:

R> e3.lm1 <- predictorEffect("type", lm1)

R> plot(e3.lm1, lines=list(multiline=TRUE))

type predictor effect plot

type

pr
es

tig
e

30

40

50

60

70

bc wc prof

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

income
2000
8000
10000

20000
30000

●

●

●

●

●

R> plot(e3.lm1, lines=list(multiline=FALSE)) # the default

11



type predictor effect plot

type

pr
es

tig
e

20
30
40
50
60
70
80

bc wc prof

●
●

●

 = income 2000

●
●

●

 = income 8000

bc wc prof

●
●

●

 = income 10000

●
● ●

 = income 20000

bc wc prof

20
30
40
50
60
70
80

●
● ●

 = income 30000

The numeric conditioning predictor income is evaluated by default at five equally spaced values,
when are then rounded to “nice” numbers.

Using the three values of 5000, 15000, 25000 for the conditioning predictor income in this example
produces a simpler graph:

R> e3.lm1 <- predictorEffect("type", lm1,

+ xlevels=list(income=c(5000, 15000, 25000)))

R> plot(e3.lm1, lines=list(multiline=TRUE),

+ confint=list(style="bars"))

type predictor effect plot

type

pr
es

tig
e

40

50

60

70

80

bc wc prof

●

●

●

●

●

●

●

● ●

income
5000
15000
25000

●

●

●

R> plot(e3.lm1,

+ lines=list(multiline=FALSE), # the default

+ lattice=list(layout=c(3, 1)))

12



type predictor effect plot

type

pr
es

tig
e

40

50

60

70

80

bc wc prof

●

●

●

 = income 5000

bc wc prof

●

●

●

 = income 15000

bc wc prof

●

● ●

 = income 25000

The argument xlevels is a list of sub-arguments that control how numeric predictors are discretized
when used in the conditioning group. For example, xlevels=list(x1=c(2, 4, 7), x2=6) would
use the values 2, 4, and 7 for the levels of the predictor x1, use 6 equally spaced values for the
predictor x2, and use the default of 5 values for any other numeric conditioning predictors. Numeric
predictors in the fixed group are not affected by the xlevels argument. We use the layout sub-
argument of the lattice argument group to arrange the panels of the second graph in 3 columns
and 1 row (see Section 3.4.2). See help("plot.eff") for information on the quantiles argument,
which provides an alternative method of setting xlevels when partial residuals are displayed, as
discussed in Section 4.

The points at which a numeric focal predictor is evaluated is controlled by the focal.levels

argument. The default of focal.levels=50 is recommended for drawing graphs, but if the goal is to
produce a table of fitted values a smaller value such as focal.levels=5 produces more compact out-
put. The focal predictor can also be set to a vector of particular values, as in focal.levels=c(30,

50, 70). Used with the predictorEffects function, the focal.levels argument can be set sepa-
rately for each focal predictor, similarly to the xlevels argument; see help("predictorEffects").

2.2 fixed.predictors: Options for Predictors in the Fixed Group

Predictors in the fixed group are replaced by “typical” values of the predictors. Fitted values are
then computed using these typical values for the fixed group, varying the values of predictors in
the conditioning group and of the focal predictor. The user can control how the fixed values are
determined by specifying the fixed.predictors argument. This argument takes a list of sub-
arguments that allow for controlling each predictor in the fixed group individually, with different
rules for factors and numeric predictors.

2.2.1 Factor Predictors

Imagine computing the fitted values evaluating a fixed factor at each of its levels. The fitted value
that is used in the predictor effects plot is a weighed average of these within-level fitted values, with
weights proportional to the number of observations at each level of the factor. This is the default
approach, and is an appropriate notion of “typical” for a factor if the data at hand are viewed as a
random sample from a population, and so the sample fraction at each level estimates the population

13



fraction.
A second approach is to average the level-specific fitted values with equal weights at each level.

This may be appropriate, for example, in designed experiments in which the levels of a factor
are assigned by an investigator. The latter method is invoked by setting fixed.predictors=

list(given.values="equal").
You can construct other weighting schemes for averaging over the levels of a factor, as described

on the help page for the Effect() function.

2.2.2 Numeric Predictors

For a numeric predictor in the fixed group the default method of selecting a typical value is to
apply the mean() function to the data for the predictor. The specification fixed.predictors=

list(typical=median) would instead use the median() function; in general, typical can be any
function that takes a numeric vector as its argument and returns a single number.

Other sub-arguments to fixed.predictors apply to the use of offsets, and to the survey package;
see the help page for the Effect() function.

2.3 se and vcov.: Standard Errors and Confidence Intervals

Standard errors and confidence intervals for fitted values are computed by default, which corre-
sponds to setting the argument se=list(compute=TRUE, type="pointwise", level=.95). Set-
ting se=FALSE omits standard errors, type="scheffe" uses wider Scheffé intervals that adjust for
simultaneous inference, and level=.8, for example, produces 80% intervals.

Standard errors are based by default on the “usual” sample covariance matrix of the estimated
regression coefficients. You can replace the default coefficient covariance matrix with some other
estimate, such as one obtained from the bootstrap or a sandwich coefficient covariance matrix es-
timator, by setting the vcov. argument either to a function that returns a coefficient covariance
matrix, such as hccm() in the car package for linear models, or to a matrix of the correct size; for
example:

R> e4.lm1 <- predictorEffect("education", lm1,

+ se=list(type="scheffe", level=.99),

+ vcov.=hccm)

R> plot(e4.lm1)

education predictor effect plot

education

pr
es

tig
e

30

40

50

60

70

80

 8 10 12 14 16

14



This plot displays 99% Scheffé intervals based on a robust coefficient covariance matrix computed
by the sandwich method; see help("hccm").

2.4 residuals: Computing Residuals for Partial Residual Plots

The argument residuals=TRUE computes and saves residuals, providing the basis for adding partial
residuals to subsequent effect plots, a topic that we discuss in Section 4.

3 Arguments for Plotting Predictor Effects

The arguments described in Section 2 are for the predictorEffect() function or the Effect()

function. Those arguments modify the computations that are performed, such as methods for aver-
aging and fixing predictors, and for computing standard errors. Arguments to the plot() methods
for the predictor effect and effect objects produced by the predictorEffect() and Effect() func-
tions are described in this section, and these change the appearance of a predictor effect plot or
modify the quantities that are plotted. These optional arguments are described in more detail in
help("plot.eff").

In 2018, we reorganized the plot() method for effect objects by combining arguments into five
major groups of related sub-arguments, with the goal of simplifying the specification of effect plots.
For example, the lines argument group is a list of sub-arguments for determining line type, color,
and width, whether or not multiple lines should be drawn on the same graph, and whether plotted
lines should be smoothed. The defaults for these sub-arguments are the choices we generally find the
most useful, but they will not be the best choices in all circumstances. The cost of reorganizing the
arguments in this manner is the necessity of specifying arguments as lists, some of whose elements
are themselves lists, requiring the user to make sure that parentheses specifying the possibly nested
lists are properly balanced.

In addition to the five argument groups that we describe below, the plot() method for effect
objects accepts the arguments main for the main title of the graph and id for identifying points in
effect plots that include residuals, as discussed in Section 4.

Finally, the plot() method for effect objects retains a number of “legacy” arguments shown in
help("plot.eff"). These arguments have been kept so existing scripts using the effects package
would not break, but they are all duplicated as sub-arguments of the five argument groups. The
legacy arguments work but they may not be supported forever, so we encourage you to use the newer
argument groups and sub-arguments.

3.1 The axes Group: Specify Axis Characteristics

The axes argument group has two major sub-arguments, x for the horizontal axis, y for the vertical
axis, and two minor sub-arguments, the grid argument, which adds a background grid to the plot,
and the alternating argument, for changing the placement of axis-tick labels in multi-panel plots.

3.1.1 x: Horizontal Axis Specification

We introduce another linear model fit to the Prestige data set to serve as an example:

R> lm2 <- lm(log(prestige) ~ log(income) + education + type, Prestige)

The default predictor effect plot for income is

R> plot(predictorEffects(lm2, ~ income))

15



income predictor effect plot

income

lo
g(

pr
es

tig
e)

3.4

3.6

3.8

4.0

4.2

 5000 10000 15000 20000 25000

The plot is curved because the predictor income is represented by its logarithm in the model formula,
but the default predictor effect plot uses the predictor income, not the regressor log(income), on
the horizontal axis. The x sub-argument can be used transform the horizontal axis, for example to
replace income by log(income):

R> plot(predictorEffects(lm2, ~ income),

+ axes=list(

+ x=list(income=list(transform=list(trans=log, inverse=exp)))

+ ))

income predictor effect plot

income

lo
g(

pr
es

tig
e)

3.4

3.6

3.8

4.0

4.2

 5000 10000150002000025000

The transformation changes the scale on the horizontal axis to log-scale, but leaves the tick labels
in arithmetic scale, and the graph is now a straight line because of the change to log-scale. This
plot has several obviously undesirable features with regard to the range of the horizontal axis and
over-printing of tick marks. We show next that additional arguments to plot() can correct these
defects.

A more elaborate version of the graph illustrates all the sub-arguments to x in axis argument

16



group:

R> plot(predictorEffects(lm2, ~ income),

+ main="Transformed Plot",

+ axes=list(

+ grid=TRUE,

+ x=list(rotate=30,

+ rug=FALSE,

+ income=list(transform=list(trans=log, inverse=exp),

+ lab="income, log-scale",

+ ticks=list(at=c(2000, 5000, 10000, 20000)),

+ lim=c(1900, 21000))

+ )))

Transformed Plot

income, log−scale

lo
g(

pr
es

tig
e)

3.4

3.6

3.8

4.0

4.2

 2000
 5000

10000
20000

We use the top-level argument main="Transformed Plot" to set the title of the plot. The axes

argument is a list with two sub-arguments, grid to turn on the background grid, and x to modify
the horizontal axis.

The x sub-argument is itself a list with three elements: The sub-arguments rotate and rug set the
rotation angle for the tick labels and suppress the rug plot, respectively. The additional sub-argument
is a list called income, the name of the focal predictor. If you were drawing many predictor effect
plots you would supply one list named for each of the focal predictors. All of the sub-arguments for
income are displayed in the example code above. The sub-argument transform=list(trans=log,

inverse=exp) specifies how to transform the x-axis. The ticks and lim sub-arguments set the tick
marks and range for the horizontal axis.

This is admittedly a complex command, but it allows you to fine-tune the graph to look the way
you want. In specifying nested argument lists, you may encounter problems getting the parentheses
in the right places. Be careful, indent your code to clarify the structure of the command, and be
patient!

17



3.1.2 y: Vertical Axis Specification for Linear Models

The model lm2 has a transformed response log(prestige), and “untransforming” the response to
arithmetic scale may be desirable. This can be accomplished with the y sub-argument, which has
two sub-arguments named transform and type that together control the scale and labeling of the
vertical axis.

There are three options for drawing the predictor effect plot for a numeric response like
log(prestige):

R> # default:

R> plot(predictorEffects(lm2, ~ education),

+ main="Default log(prestige)")

R> # Change only tick-mark labels to arithmetic scale:

R> plot(predictorEffects(lm2, ~ education),

+ main="log(prestige), Arithmetic Ticks",

+ axes=list(y=list(transform=list(trans=log, inverse=exp),

+ lab="prestige", type="rescale")))

R> # Replace log(presige) by prestige:

R> plot(predictorEffects(lm2, ~ education),

+ main="Prestige in Arithmethic Scale",

+ axes=list(y=list(transform=exp, lab="prestige")))

Default log(prestige)

education

lo
g(

pr
es

tig
e)

3.4

3.6

3.8

4.0

4.2

 8 10 12 14 16

log(prestige), Arithmetic Ticks

education

pr
es

tig
e

30

40

50

60

70

 8 10 12 14 16

Prestige in Arithmethic Scale

education

pr
es

tig
e

30

40

50

60

70

 8 10 12 14 16

The first plot is the default, with a log-response. In the second plot, the transform sub-argument
specifies the transformation of the response and its inverse, and the sub-argument type="rescale"
changes the tick marks on the vertical axis to arithmetic scale. In the third version, with trans-

form=exp, lab="prestige", the vertical axis now is in arithmetic scale, not log scale, although that
may not be completely obvious in the example because log(x) is nearly linear: Look closely to see
that the axis ticks marks in the second graph are unequally spaced, while those in the third graph
are equally spaced and the plotted line in the latter is slightly curved. The help page ?plot.eff

provides a somewhat more detailed explanation of these options.
As a second example we will reconstruct Figure 7.10 in Fox and Weisberg (2019, Sec. 7.2). In

that section, we fit a linear mixed-effects model to data from the Blackmore data frame in the
carData package. Blackmore includes longitudinal data on amount of exercise for girls hospitalized
for eating disorders and for similar control subjects who were not hospitalized. We transformed the
response variable in the model, hours of exercise, using a transformation in a modified Box-Cox
power family that allows zero or negative responses, explained briefly by Fox and Weisberg (2019,
Sec. 3.4) and more thoroughly by Hawkins and Weisberg (2017). The fitted model is

R> library("lme4") # for lmer()

Loading required package: Matrix

18



R> Blackmore$tran.exercise <- bcnPower(Blackmore$exercise,

+ lambda=0.25, gamma=0.1)

R> mm1 <- lmer(tran.exercise ~ I(age - 8)*group +

+ (I(age - 8) | subject), data=Blackmore)

This model, with numeric predictor age and factor predictor group, is a linear mixed model with
random intercepts and slopes for age that vary by subject. The response variable is a transformation
of exercise similar to the fourth root with adjustment for zero values; see help("bcnPower").

The predictor effect plot for the fixed effect of age is

R> e1.mm1 <- predictorEffect("age", mm1)

R> plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto"))

age predictor effect plot

age

tr
an

.e
xe

rc
is

e

−0.5

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 8 10 12 14 16 18

group
control patient

The plot clearly shows the difference in the average age trajectory between the "control" and
"patient" groups, with the fitted response for the latter having a larger slope. The graph is hard
to decode, however, because the vertical axis is approximately in the scale of the fourth-root of
hours of exercise, so untransforming the response may produce a more informative plot. Because the
bcnPower() transformation is complex, the car package includes the function bcnPowerInverse()

to reverse the transformation:

R> f.trans <- function(x) bcnPower(x, lambda=0.25, gamma=0.1)

R> f.inverse <- function(x) bcnPowerInverse(x, lambda=0.25, gamma=0.1)

R> plot(e1.mm1, lines=list(multiline=TRUE),

+ confint=list(style="auto"),

+ axes=list(x=list(age=list(lab="Age (years)")),

+ y=list(transform=list(trans=f.trans, inverse=f.inverse),

+ type="response",

+ lab="Exercise (hours/week)")),

+ lattice=list(key.args=list(x=.20, y=.75, corner=c(0, 0),

+ padding.text=1.25)),

+ main=""

+ )

19



Age (years)

E
xe

rc
is

e 
(h

ou
rs

/w
ee

k)

1

2

3

4

5

6

7

 8 10 12 14 16 18

group
control
patient

The response scale is now in hours per week, and we see that hours of exercise increase more quickly
on average in the patient group for older subjects. We use additional arguments in this plot to match
Fox and Weisberg (2019, Fig. 7.10), including moving the key inside of the graph (see Section 3.4.1),
changing the axis labels, and removing the main title to the plot.2

3.1.3 y: Vertical Axis Specification for Generalized Linear Models

Transforming the vertical axis for generalized linear models also uses the y sub-argument to the
axes argument. You typically do not need to specify the transform sub-argument because plot()

obtains the right functions from the regression model’s family component. The type sub-argument
has the same three possible values as for linear models, but their interpretation is somewhat different:

1. Predictor effect plots in type="link" scale have a predictor on the horizontal axis and the
vertical axis is in the scale of the linear predictor. For logistic regression, for example, the
vertical axis is in log-odds (logit) scale. For Poisson regression with the log-link, the vertical
axis is in log-mean (log-count) scale.

2. Predictor effect plots in type="response" or mean scale are obtained by “untransforming” the
y axis using the inverse of the link function. For the log-link, this corresponds to transforming
the y axis and plotting exp(y). For logistic regression, y = log[p/(1 − p)] and, solving for p,
p = exp(y)/[1 + exp(y)] = 1/[1 + exp(−y)], so the plot in mean scale uses 1/[1 + exp(−y)] on
the vertical axis.

3. We also provide a third option, type="rescale", which plots in linear predictor (e.g., logit)
scale, but labels the tick marks on the vertical axis in mean (e.g., probability) scale. This
third option, which retains the linear structure of the model but labels the vertical axis on the
usually more familiar mean scale, is the default.

We use the Blowdown data from the alr4 package to provide examples. These data concern the
probability of blowdown y, a tree being uprooted as the result of a major straight-line wind storm

2The code shown for this graph in Fox and Weisberg (2019) uses “legacy” arguments, and is therefore somewhat
different from the code given here. Both commands produce the same plot, however.

20



in the Boundary Waters Canoe Area Wilderness in 1999, modeled as a function of the diameter d

of the tree, the local severity s of the storm, and the species spp of the tree. We fit a main-effects
model and then display all three predictor effect plots:

R> data("Blowdown", package="alr4")

R> gm1 <- glm(y ~ log(d) + s + spp, family=binomial, data=Blowdown)

R> plot(predictorEffects(gm1),

+ axes=list(grid=TRUE, x=list(rug=FALSE, rotate=35)))

d predictor effect plot

d

y

0.2

0.4

0.6

0.8

20 40 60 80

s predictor effect plot

s

y
0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

spp predictor effect plot

spp

y

0.2

0.4
0.6

0.8

asp
en

balsa
m fir

black 
sp

ruce
ce

dar

jackp
ine

paper b
irc

h

red pine

red m
aple

black 
ash

●

●

●
●

●

●

● ●

●

The rug=FALSE sub-argument to x suppresses the rug plot that appears by default at the bottom
of graphs for numeric predictors, and the grid sub-argument to axes adds background grids. The
rotate sub-argument prints the horizontal tick labels at an angle to avoid overprinting.

Interpretation of GLM predictor effect plots in link scale is similar to predictor effect plots for
linear models, and all the modifications previously described can be used for these plots. Because
the default is type="rescale", the vertical axis is in linear predictor scale, which is the log-odds or
logit for this logistic regression example, but the vertical axis labels are in mean (probability) scale,
so the tick-marks are not equally spaced.

The next three graphs illustrate the possible values of the argument type:

R> e1.gm1 <- predictorEffect("spp", gm1)

R> plot(e1.gm1, main="type='rescale'",
+ axes=list(y=list(type="rescale",

21



+ lab="logit scale, probability labels"),

+ x=list(rotate=30),

+ grid=TRUE))

R> plot(e1.gm1, main="type='link'",
+ axes=list(y=list(type="link",

+ lab="logit scale, logit labels"),

+ x=list(rotate=30),

+ grid=TRUE))

R> plot(e1.gm1, main="type='response'",
+ axes=list(y=list(type="response", grid=TRUE,

+ lab="probabilty scale, probability labels"),

+ x=list(rotate=30),

+ grid=TRUE))

type='rescale'

spp

lo
gi

t s
ca

le
, p

ro
ba

bi
lit

y 
la

be
ls

0.2

0.4

0.6

0.8

aspen

balsam fir

black spruce
cedar

jackpine

paper b
irch

red pine

red maple

black ash

●

●

●
●

●

●

● ●

●

type='link'

spp

lo
gi

t s
ca

le
, l

og
it 

la
be

ls

−3

−2

−1

 0

 1

aspen

balsam fir

black spruce
cedar

jackpine

paper b
irch

red pine

red maple

black ash

●

●

●
●

●

●

● ●

●

type='response'

spp
pr

ob
ab

ilt
y 

sc
al

e,
 p

ro
ba

bi
lit

y 
la

be
ls

0.2

0.4

0.6

0.8

aspen

balsam fir

black spruce
cedar

jackpine

paper b
irch

red pine

red maple

black ash

●

●

●
●

●

●

● ●

●

The first two graphs show the same plot, but in the first the tick-marks on the vertical axis are
unequally spaced and are in probability scale, while in the second the tick-marks are equally spaced
and are in log-odds scale. In the third graph, the vertical axis has been transformed to probability
scale, and the corresponding tick-marks are now equally spaced.

The predictor effects plot for species would be easier to understand if the levels of the factor were
ordered according to the estimated log-odds of blowdown. First, we need to recover the fitted values
in link scale, which are log-odds of blowdown for a logistic model. The fitted log-odds are stored in
as.data.frame(e1.gm1)$fit using the e1.gm1 object previously computed:

R> or <- order(as.data.frame(e1.gm1)$fit) # order smallest to largest

R> Blowdown$spp1 <- factor(Blowdown$spp, # reorder levels of spp

+ levels=levels(Blowdown$spp)[or])

R> gm2 <- update(gm1, ~ . - spp + spp1) # refit model

R> plot(predictorEffects(gm2, ~ spp1), main="type='response', ordered",

+ axes=list(y=list(type="response",

+ lab="probabilty scale, probability labels"),

+ x=list(rotate=30, spp=list(lab="Species")),

+ grid=TRUE))

22



type='response', ordered

pr
ob

ab
ilt

y 
sc

al
e,

 p
ro

ba
bi

lit
y 

la
be

ls
0.2

0.4

0.6

0.8

balsam fir

jackpine

red maple

red pine
aspen

black spruce

black ash
cedar

paper b
irch

●
●

● ●

● ● ●

●

●

The separation of species into two groups of lower and higher probability species is reasonably clear
after ordering, with paper birch more susceptible to blowdown than the other species and possibly
in a group by itself.

3.2 The lines Group: Specifying Plotted Lines

The lines argument group allows the user to specify the color, type, thickness, and smoothness of
lines. This can be useful, for example, if the colors used by effects by default are for some reason
unacceptable, such as for publications in which only black or gray-scale lines are permitted. The
most common use of this argument group is to allow more than one line to be plotted on the same
graph or panel via the multiline sub-argument.

3.2.1 multiline and z.var: Multiple Lines in a Plot

Default predictor effect plots with conditioning predictors generate a separate plot for each level of
the conditioning variable, or for each combination of levels if there is more than one conditioning
variable. For an example, we add the log(d):s interaction to the model gm1, and generate the
predictor effect plots for s and for d:

R> gm3 <- update(gm2, ~ . + s:log(d)) # add an interaction

R> plot(predictorEffects(gm3, ~ s + d),

+ axes=list(x=list(rug=FALSE, rotate=90),

+ y=list(type="response", lab="Blowdown Probability")),

+ lattice=list(layout=c(1, 5)))

23



s predictor effect plot

s

B
lo

w
do

w
n 

P
ro

ba
bi

lit
y

0.2

0.4

0.6

0.8

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = d 5

0.2

0.4

0.6

0.8

1.0
 = d 20

0.2

0.4

0.6

0.8

1.0
 = d 40

0.2

0.4

0.6

0.8

1.0
 = d 60

0.2

0.4

0.6

0.8

1.0
 = d 80

d predictor effect plot

d

B
lo

w
do

w
n 

P
ro

ba
bi

lit
y

0.2

0.4

0.6

0.8

1.0

20 40 60 80

 = s 0.02

0.2

0.4

0.6

0.8

1.0
 = s 0.3

0.2

0.4

0.6

0.8

1.0
 = s 0.5

0.2

0.4

0.6

0.8

1.0
 = s 0.7

0.2

0.4

0.6

0.8

1.0
 = s 1

Setting the sub-argument type="response" for the y axis plots the response on the probability
scale. Setting layout=c(1, 5) arranges each predictor effect plot in 1 column of 5 rows. See the
description of the lattice argument in Section 3.4.

The predictor effect plot for s conditions on the level of d, and displays the plot of the fitted
values for y versus s in a separate panel for each value of d. Similarly, the predictor effect plot
for d displays a separate panel for each conditioning level of s. Confidence bands are displayed by
default around each fitted line. These two graphs are based on essentially the same fitted values,
with the values of the interacting predictors s and d varying, and fixing the factor predictor spp to
its distribution in the data, as described in Section 2.2.1. Concentrating on the graph at the right
for the focal predictor d, when s is very small the probability of blowdown is estimated to be in the
range of about .05 to .3 for any value of d, but for larger values of s, the probability of blowdown
increases rapidly with d. Similar comments can be made concerning the predictor effect plot for s.

Setting multiline=TRUE superimposes the lines for all the conditioning values in a single graph.
In the example below, we reduce the number of levels of the conditioning variable for each predictor
effect plot to three explicit values each to produce simpler graphs, although this is not required.
The xlevels argument changes the number of levels for the conditioning predictors, but does not
affect the number of levels for the focal predictor. This latter quantity could be changed with the
focal.levels argument, but the default value of 50 evaluations is appropriate for graphing effects.

24



R> plot(predictorEffects(gm3, ~ s + d,

+ xlevels=list(d=c(5, 40, 80), s=c(0.1, 0.5, 0.9))),

+ axes=list(grid=TRUE,

+ x=list(rug=FALSE),

+ y=list(type="response", lab="Blowdown probability")),

+ lines=list(multiline=TRUE))

s predictor effect plot

s

B
lo

w
do

w
n 

pr
ob

ab
ili

ty

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

d
5
40
80

d predictor effect plot

d

B
lo

w
do

w
n 

pr
ob

ab
ili

ty

0.2

0.4

0.6

0.8

1.0

20 40 60 80

s
0.1
0.5
0.9

In each graph, we kept, more or less, the lowest, middle, and highest values of the conditional
predictor for the interaction. We also added a grid to each graph. Multiline plots by default omit
confidence bands or intervals, but these can be included using the confint argument discussed in
Section 3.3. By default, different values of the conditioning predictor are distinguished by color,
and a key is provided. The placement and appearance of the key are controlled by the key.args

sub-argument in the lattice group discussed in Section 3.4.1.
When the conditioning group includes two or more predictors, and certainly when it includes

three or more predictors, multiline plots are almost always helpful because otherwise the resulting
array of panels becomes too complicated. Suppose that we add the spp:log(d) interaction to the
illustrative model. The predictor effect plot for d now includes both s and spp in the conditioning
set because d interacts with both of these predictors:

R> gm4 <- update(gm3, ~ . + spp:log(d))

R> plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))),

+ axes=list(grid=TRUE,

+ y=list(type="response"),

+ x=list(rug=FALSE)),

+ lines=list(multiline=TRUE))

25



d predictor effect plot

d

y

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80

 = spp aspen  = spp balsam fir

20 40 60 80

 = spp black spruce

 = spp cedar  = spp jackpine

0.0

0.2

0.4

0.6

0.8

1.0
 = spp paper birch

0.0

0.2

0.4

0.6

0.8

1.0
 = spp red pine

20 40 60 80

 = spp red maple  = spp black ash

s
0.1
0.5
0.9

This plot now displays the lines for all conditioning values of s within the panel for each level of
the conditioning factor spp. Compare this graph to the much more confusing plot in which different
lines are drawn for the nine levels of the conditioning factor spp, obtained by using the z.var

sub-argument in the lines group:

R> plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))),

+ axes=list(grid=TRUE,

+ y=list(type="response"),

+ x=list(rug=FALSE)),

+ lines=list(multiline=TRUE, z.var="spp", lty=1:9),

+ lattice=list(layout=c(3, 1)))

26



d predictor effect plot

d

y

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80

 = s 0.1

20 40 60 80

 = s 0.5

20 40 60 80

 = s 0.9

spp
aspen
balsam fir
black spruce

cedar
jackpine
paper birch

red pine
red maple
black ash

The z.var sub-argument for lines selects the predictor that determines the lines within a panel and
the remaining predictors, here just s, distinguish the panels. The default choice of z.var is usually,
but not always, appropriate. We also use the lattice argument to display the array of panels in
3 columns and 1 row, and differentiate the lines by line type and color using arguments discussed
next.

3.2.2 col, lty, lwd, spline: Line Color, Type, Width, Smoothness

Different lines in the same plot are differentiated by default using color. This can be modi-
fied by the sub-arguments lty, lwd and col to set line types, widths, and colors, respectively.
For example, in the last graph shown you can get all black lines of different line types using
lines=list(multiline=TRUE, col="black", lty=1:9), or using a gray scale, lines=

list(multiline=TRUE, col=gray((1:9)/10)).
The plot() method for effect objects by default uses smoothing splines to interpolate between

plotted points. Smoothing can be turned off with splines=FALSE in the lines argument, but we
rarely expect this to be a good idea. The number of values at which the focal predictor is evaluated is
set with the focal.levels argument, and it defaults to 50. In any case, more than three evaluations,
and possibly many more, should be used for a reasonable spline approximation.

3.3 The confint Group: Specifying Confidence Interval Inclusion and Style

The confint argument group controls the inclusion and appearance of confidence intervals and
regions. This argument has three sub-arguments. The style sub-argument is either "bars", for
confidence bars, typically around the estimated adjusted mean for a factor level; "bands", for shaded
confidence bands, typically for numeric focal predictors; "auto", to let the program automatically
choose between "bars" and "bands"; "lines", to draw only the edges of confidence bands with no
shading; or "none", to suppress confidence intervals. The default is "auto" when multiline=FALSE

and "none" when multiline=TRUE. Setting confint="auto" produces bars for factors and bands
for numeric predictors. For example:

R> plot(predictorEffects(gm3, ~ d,

+ xlevels=list(s=c(0.1, 0.5, 0.9))),

+ axes=list(grid=TRUE,

+ x=list(rug=FALSE),

+ y=list(type="response")),

+ lines=list(multiline=TRUE),

+ confint=list(style="auto"))

27



d predictor effect plot

d

y

0.2

0.4

0.6

0.8

1.0

20 40 60 80

s
0.1
0.5
0.9

In this example the confidence bands are well separated, so including them in a multiline graph isn’t
problematic; in other cases, overlapping confidence bands produce an artistic but uninterpretable
mess.

With a factor focal predictor, we get:

R> gm5 <- update(gm2, ~ . + spp:s)

R> plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))),

+ axes=list(grid=TRUE,

+ y=list(type="response"),

+ x=list(rug=FALSE, rotate=30)),

+ lines=list(multiline=TRUE),

+ confint=list(style="auto"))

spp predictor effect plot

spp

y

0.2

0.4

0.6

0.8

1.0

aspen

balsam fir

black spruce
cedar

jackpine

paper b
irch

red pine

red maple

black ash

●
●

●
● ●

● ●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

● ●

●

●

s
0.1
0.5
0.9

●

●

●

28



The error bars for the various levels of s are slightly staggered to reduce over-plotting.
Two additional arguments, col and alpha, control respectively the color of confidence bars and

regions and the transparency of confidence regions. Users are unlikely to need these options. Finally,
the type of confidence interval shown, either pointwise or Scheffé corrected for multiple comparisons,
is controlled by the se argument to the predictorEffect() or Effect() function (see Section 2.3).

3.4 The lattice Group: Specifying Standard lattice Package Arguments

The plot() methods defined in the effects package use functions in the lattice package (Sarkar,
2008), such as xyplot(), to draw effect plots, which often comprise rectangular arrays of panels.
In particular, the plot() method for the "eff" objects returned by the Effect() function are
"trellis" objects, which can be manipulated in the normal manner. “Printing” a returned effect-
plot object displays the plot in the current R graphics device.

The lattice group of arguments to the plot() method for effect objects may be used to specify
various standard arguments for lattice graphics functions such as xyplot(). In particular, you can
control the number of rows and columns when panels are displayed in an array, modify the key
(legend) for the graph, and specify the contents of the “strip” displayed in the shaded region of
text above each panel in a lattice array. In addition, the array sub-argument, for advanced users,
controls the layout of multiple predictor effect plots produced by the predictorEffects() function.

3.4.1 key.args: Modifying the Key

A user can modify the placement and appearance of the key with the key.args sub-argument, which
is itself a list. For example:

R> plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))),

+ rug=FALSE,

+ axes=list(grid=TRUE,

+ y=list(type="response"),

+ x=list(rotate=30)),

+ lines=list(multiline=TRUE),

+ confint=list(style="auto"),

+ lattice=list(key.args=list(space="right",

+ columns=1,

+ border=TRUE,

+ fontfamily="serif",

+ cex=1.25,

+ cex.title=1.5)))

29



spp predictor effect plot

spp

y

0.2

0.4

0.6

0.8

1.0

aspen

balsam fir

black spruce
cedar

jackpine

paper b
irch

red pine

red maple

black ash

●

●
●

● ●

● ●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

● ●

●

●

s
0.1
0.5
0.9

●

●

●

The sub-argument space="right" moves the key to the right of the graph, overriding the default
space="top". Alternatively the key can be placed inside the graph using the x, y, and corner

sub-arguments, as illustrated in the graph on page 20. The choices for fontfamily are "sans" and
"serif", and affect only the key; the rest of the plot uses "sans". The sub-arguments cex and
cex.title control the relative sizes of the key entries and the key title, respectively. Finally, any
argument documented in help("xyplot") in the key section can be set with this argument. If
you use the default space="top" for placement of the key, you may wish to adjust the number of
columns in the key, particularly if the level names are long.

3.4.2 layout: Controlling Panel Placement

The layout sub-argument to the lattice argument allows a user to customize the layout of multiple
panels in a predictor effect plot; for example:

R> plot(predictorEffects(gm3, ~ s + d, xlevels=list(s=6, d=6)),

+ axes=list(x=list(rug=FALSE, rotate=90),

+ y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))),

+ lattice=list(layout=c(3, 2)))

30



s predictor effect plot

s

y

0.999

0.990
0.950
0.800
0.500
0.200
0.050

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = d 5  = d 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = d 40

 = d 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = d 70

0.999

0.990
0.950
0.800
0.500
0.200
0.050

 = d 80

d predictor effect plot

d

y

0.999

0.990
0.950
0.800
0.500
0.200
0.050

20 40 60 80

 = s 0.02  = s 0.2

20 40 60 80

 = s 0.4

 = s 0.6

20 40 60 80

 = s 0.8

0.999

0.990
0.950
0.800
0.500
0.200
0.050

 = s 1

Here, the layout sub-argument specifies an array of 3 columns and 2 rows for each of the predictor
effect plots.

3.4.3 array: Multiple Predictor Effect Plots

If you create several predictor effect objects with the predictorEffects() function, the plot()

method for the resulting "predictorefflist" object divides the lattice graphics device into a rect-
angular array of sub-plots, so that the individual predictor effect plots, each potentially with several
panels, are drawn without overlapping. An alternative is for the user to generate the predictor effect
plots separately, subsequently supplying the array sub-argument to plot() directly to create a cus-
tom meta-array of predictor effect plots; this argument is ignored, however, for "predictorefflist"
objects produced by predictorEffects().

Suppose, for example, that we want to arrange the two predictor effect plots for the previ-
ous example vertically rather than horizontally. One way to do that is to save the object pro-
duced by predictorEffects() and to plot each of its two components individually, specifying
the position or split and more arguments to the print() method for "trellis" objects: see
help("print.trellis").

Another approach is to generate the plots individually using predictorEffect() and to specify
the array sub-argument to plot(), as follows:

R> plot(predictorEffect("s", gm3, xlevels=list(d=6)),

+ axes=list(x=list(rug=FALSE, rotate=90),

+ y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))),

+ lattice=list(layout=c(3, 2),

+ array=list(row=1, col=1, nrow=2, ncol=1, more=TRUE)))

R> plot(predictorEffect("d", gm3, xlevels=list(s=6)),

+ axes=list(x=list(rug=FALSE, rotate=90),

+ y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))),

+ lattice=list(layout=c(3, 2),

+ array=list(row=2, col=1, nrow=2, ncol=1, more=FALSE)))

31



s predictor effect plot

s

y

0.999

0.990
0.950
0.800
0.500
0.200
0.050

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = d 5  = d 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = d 40

 = d 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = d 70

0.999

0.990
0.950
0.800
0.500
0.200
0.050

 = d 80

d predictor effect plot

d

y

0.999

0.990
0.950
0.800
0.500
0.200
0.050

20 40 60 80

 = s 0.02  = s 0.2

20 40 60 80

 = s 0.4

 = s 0.6

20 40 60 80

 = s 0.8

0.999

0.990
0.950
0.800
0.500
0.200
0.050

 = s 1

In each case, the row and col sub-arguments indicate the position of the current graph in the meta-
array; nrow and ncol give the dimensions of the meta-array, here 2 rows and 1 column; and more

indicates whether there are more elements of the meta-array after the current graph.

3.4.4 strip: Modifying the Text at the Tops of Panels

Lattice graphics with more than one panel typically provide a text label at the top of each panel in
an area called the strip. The default strip text contains the name of the conditioning predictor and
the value to which it is set in the panel; if there are more than one conditioning predictor, then all
of their names and corresponding values are shown. For example:

R> plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))),

+ axes=list(grid=TRUE,

+ x=list(rug=FALSE),

+ y=list(type="response")),

32



+ lines=list(multiline=TRUE, z.var="spp", lty=1:9),

+ lattice=list(layout=c(3, 1),

+ strip=list(factor.names=TRUE,

+ values=TRUE,

+ cex=1.5)))

d predictor effect plot

d

y

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80

 = s 0.1

20 40 60 80

 = s 0.5

20 40 60 80

 = s 0.9

spp
aspen
balsam fir
black spruce

cedar
jackpine
paper birch

red pine
red maple
black ash

Setting factor.names=FALSE (the default is TRUE) displays only the value, and not the name, of the
conditioning predictor in each strip; usually, this is desirable only if the name is too long to fit, in
which case you may prefer to rename the predictor. Setting values=FALSE replaces the conditioning
value with a line in the strip that represents the value: The line is at the left of the strip for the
smallest conditioning value, at the right for the largest value, and in a proportional intermediate
position in between the two extremes. The most generally useful sub-argument is cex, which allows
you to reduce or expand the relative size of the text in the strip, in this case increasing the size to
150% of standard size.

3.5 symbols: Plotting symbols

Symbols are used to represent adjusted means when the focal predictor is a factor. You can control
the symbols used and their relative size:

R> gm5 <- update(gm2, ~ . + spp:s)

R> plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))),

+ symbols=list(pch=15:17, cex=1.5),

+ axes=list(grid=TRUE,

+ y=list(type="response"),

+ x=list(rotate=30)),

+ lines=list(multiline=TRUE),

+ confint=list(style="auto"),

+ lattice=list(key.args=list(cex=1.5, cex.title=1.5)))

33



spp predictor effect plot

spp

y

0.2

0.4

0.6

0.8

1.0

aspen

balsam fir

black spruce
cedar

jackpine

paper b
irch

red pine

red maple

black ash

●

●

●

● ●

● ●

●

●

s
0.1
0.5
0.9

●

We use the pch sub-argument to set the symbol number for plotted symbols; you can enter the
commands plot(1:25, pch=1:25) and lines(1:25, lty=2, type="h") to see the 25 plotting
symbols in R. The sub-argument pch can also be a character vector, such as letters[1:10]. In
this example, we set cex=1.5 to increase the symbol size by the factor 1.5. Because only one value
is given, it is recycled and used for all of the symbols. We need to change the size of the symbols
in the key separately, as we do here via the key.args sub-argument to the lattice argument (see
Section 3.4.1).

4 Displaying Residuals in Predictor Effect Plots

Fox and Weisberg (2018) introduce methodology for adding partial residuals to a predictor effect
or effect plot. This can be desirable to display variation in data around a fitted partial regression
surface or to diagnose possible lack of fit, as the resulting plots are similar to traditional component-
plus-residual plots (Fox and Weisberg, 2019, Sec. 8.4).

The predictor effect plot for a numeric focal predictor that does not interact with other predictors
is equivalent to a standard component-plus-residual plot; for example:

R> lm5 <- lm(prestige ~ log(income) + education + women + type,

+ Prestige)

R> plot(predictorEffects(lm5, residuals=TRUE),

+ axes=list(grid=TRUE,

+ x=list(rotate=30)),

+ partial.residuals=list(smooth=TRUE,

+ span=0.75,

34



+ lty="dashed"))

income predictor effect plot

income

pr
es

tig
e

20

30

40

50

60

70

80

 5000
10000

15000
20000

25000

●
●

●
●

● ●

●

●
●

●●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

education predictor effect plot

education

pr
es

tig
e

20

30

40

50

60

70

80

 8 10 12 14 16

●

●

●

●

● ●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●
● ●

●

●

●

●
●

●●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

women predictor effect plot

women

pr
es

tig
e

20

30

40

50

60

70

80

  0  20  40  60  80 100

●

●

●
●

●
● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●● ●●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●

type predictor effect plot

type

pr
es

tig
e

20

30

40

50

60

70

80

bc wc
prof

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●● ●

●

●

●

●

●

●
●

● ●
●
●

●

● ●

●

●

●
● ●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●●

●

●
●

●●●
●

●

●

●

●

The partial residuals to be plotted are computed using the residuals argument to the predic-

torEffect(), predictorEffects(), or Effect() function. For the numeric predictors income,
education, and women, the plotted points are each equal to a point on the fitted blue line, repre-
senting the partial fit, plus the corresponding residual. For income, the fitted partial-regression line
in curved because of the log transformation of the predictor, but the partial-regression function is a
straight line for the other two numeric predictors.

The dashed line produced by lty="dashed" in the same magenta color as the plotted points on
the graph, is a loess nonparametric-regression smooth of the points. The sub-argument smooth=TRUE
is the default if residuals are present in the effect object to be plotted. The sub-argument span=0.75
adjusts the span of the loess smoother from the default of 2/3—an unnecessary adjustment here
specified simply to illustrate how to set the span. If the model adequately represents the data, then
the dashed magenta line should approximately match the solid blue partial-regression line, which
represents the fitted model.

For the factor type, the points are jittered horizontally to separate them visually, because the
only possible horizontal coordinates are at the three distinct factor levels. Smooths are not fit to
factors and instead the conditional means of the partial residuals are plotted as solid magenta dots;
in the current model, the magenta dots and the blue dots representing the fitted adjusted means of
the response at the levels of name necessarily match.

The plot() method for effect objects has a partial.residuals argument, with several sub-
arguments that control how partial residuals are displayed. In the command above, we used the

35



sub-argument smooth=TRUE to add the smoother, which is the default when residuals are included
in the effect object, and lty="dashed" to change the line type for the smooth from the default solid
line to a dashed line. All the smooth sub-arguments are described in help("plot.eff").

For a second example, we fit a linear model with an interaction to the UN data set in the carData
package, modelling national infantMortality rate (infant deaths per 1000 live births) as a function
of ppgdp, per person GDP (in U.S. dollars), and country group (OECD nations, African nations,
and other nations). The data are for roughly 200 nations of the world and are from approximately
2009 to 2011:

R> options(scipen=10) # suppress scientific notation

R> lm6 <- lm(infantMortality ~ group*ppgdp, data=UN)

R> plot(predictorEffects(lm6, ~ ppgdp, partial.residuals=TRUE),

+ axes=list(x=list(rotate=25),

+ y=list(lim=c(0, 150))),

+ id=list(n=1),

+ lattice=list(layout=c(3, 1)))

ppgdp predictor effect plot

ppgdp

in
fa

nt
M

or
ta

lit
y

  0

 20

 40

 60

 80

100

120

140

     
0

 20000
 40000

 60000
 80000

100000

●●●●●
● ●● ●●●●● ●● ● ● ●

●

●● ●● ●● ● ● ●

●

● ●

Turkey

 = group oecd

     
0

 20000
 40000

 60000
 80000

100000

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●
●

●● ●● ●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●
●

●

●

● ●●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●

●

●●

● ●
●

●●●
● ●
●

●

●

●

●

●●
●

●

●●

●
●

●

●
●

●
●

●

●

●
●

●

Afghanistan

 = group other

     
0

 20000
 40000

 60000
 80000

100000

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

Equatorial Guinea

 = group africa

The predictor effect plot for ppgdp conditions on the factor group because of the interaction between
these two predictors. Several problems are apparent in this plot: The id argument is used to identify
the most unusual point in each panel, as described in detail in help("plot.eff"). Turkey has higher
than predicted infant mortality for the "oecd" group; Afghanistan, in the "other" group, has infant
mortality much higher than predicted; and Equatorial Guinea is clearly unusual for the "africa"

group. In addition, the smooths through the points do not match the fitted lines in the "other"

and "africa" groups. We use the command options(scipen=10) to suppress annoying scientific
notation in the tick-mark labels on the horizontal axis, and instead rotate these labels so that they
fit without over-plotting.

Log-transforming both the predictor ppgdp and the response infantMortality produces a better
fit to the data:

R> lm7 <- lm(log(infantMortality) ~ group*log(ppgdp), data=UN)

R> plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE),

+ axes=list(x=list(rotate=25)),

+ id=list(n=1),

+ lattice=list(layout=c(3, 1)))

36



ppgdp predictor effect plot

ppgdp

lo
g(

in
fa

nt
M

or
ta

lit
y)

1

2

3

4

5

     
0

 20000
 40000

 60000
 80000

100000

●
●●

●

●

●

●●

●
●●

●
●

●
● ●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

Turkey

 = group oecd

     
0

 20000
 40000

 60000
 80000

100000

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●●●

●

●

●

●

●

●

●

● ●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●
●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

Qatar

 = group other

     
0

 20000
 40000

 60000
 80000

100000

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●
Equatorial Guinea

 = group africa

Equatorial Guinea is still anomalous, however. Rescaling the vertical axis to arithmetic scale pro-
duces a slightly different, but possibly useful, picture:

R> plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE),

+ axes=list(x=list(rotate=25),

+ y=list(transform=list(trans=log, inverse=exp),

+ type="response",

+ lab="Infant Mortality")),

+ id=list(n=1),

+ lattice=list(layout=c(3, 1)))

ppgdp predictor effect plot

ppgdp

In
fa

nt
 M

or
ta

lit
y

  0

 50

100

150

200

250

     
0

 20000
 40000

 60000
 80000

100000

●●●●● ● ●● ●●●●● ●● ● ● ●
●

●● ●● ●● ● ● ●

●

● ●
Turkey

 = group oecd

     
0

 20000
 40000

 60000
 80000

100000

●

● ●

●

●

●

●
●

●

●
●
●

●●

●
●

●●

●

●● ●● ●● ●

●

●

●●●
●

●

●

●
●

●

●

● ●

●
●●

●

●● ●

●

●

●

●

●

●

● ●●● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●

●●
●●

● ●●
●●●● ●●

●

●

●
●

●●●

●

●●
●

●

●

●
●

●●

●
●

●

●

●

Afghanistan
 = group other

     
0

 20000
 40000

 60000
 80000

100000

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

Equatorial Guinea

 = group africa

Partial residuals can be added to effect plots for linear or generalized linear models in the default
link scale, and to effect plots for linear or generalized linear mixed models.

4.1 Using the Effect() Function With Partial Residuals

In most instances, predictor effect plots produced by predictorEffect() or predictorEffects()

visualize a fitted model in the most natural manner, but sometimes in looking for lack of fit, we

37



want to plot against arbitrary combinations of predictors. The more general Effect() function is
capable of doing that.

Recall, for example, the additive model lm2 fit to the Prestige data:

R> S(lm2)

Call: lm(formula = log(prestige) ~ log(income) + education + type, data =

Prestige)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.6073 0.3666 1.66 0.10100

log(income) 0.2787 0.0458 6.09 0.000000026

education 0.0656 0.0162 4.05 0.00011

typewc 0.0325 0.0634 0.51 0.61014

typeprof 0.1255 0.0965 1.30 0.19662

Residual standard deviation: 0.177 on 93 degrees of freedom

(4 observations deleted due to missingness)

Multiple R-squared: 0.792

F-statistic: 88.5 on 4 and 93 DF, p-value: <2e-16

AIC BIC

-54.36 -38.85

Plotting partial residuals for the predictors income and type simultaneously reveals an unmodeled
income× type interaction:

R> plot(Effect(c("income", "type"), lm2, residuals=TRUE),

+ axes=list(x=list(rotate=30)),

+ partial.residuals=list(span=0.9),

+ layout=c(3, 1))

income*type effect plot

income

lo
g(

pr
es

tig
e)

3.0

3.5

4.0

 5000
10000

15000
20000

25000

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

 = type bc

 5000
10000

15000
20000

25000

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●●

●

●

●

●●
●

 = type wc

 5000
10000

15000
20000

25000

●
●

●●
● ●●

●●
●●●

●
●

●

●

●

●
●

●
●

● ●

●

●
●

●●

●
●

●

 = type prof

5 Polytomous Categorical Responses

The effects package produces special graphs for ordered and unordered polytomous categorical re-
sponse variables. In an ordinal regression, the response is an ordered categorical variable with three
or more levels. For example, in a study of women’s labor force participation that we introduce
below, the response is not working outside the home, working part time, or working full time. The

38



proportional-odds model (Fox and Weisberg, 2019, Sec. 6.9) estimates the probability of a response
in each of these three categories given a linear combination of regressors defined by a set of predictors,
assuming a logit link function.

We illustrate the proportional-odds model with the Womenlf data set in the carData package, for
young married Canadian women’s labor-force participation, using the polr() function in the MASS
package to fit the model:

R> library("MASS") # for polr()

R> Womenlf$partic <- factor(Womenlf$partic,

+ levels=c("not.work", "parttime", "fulltime")) # order response levels

R> or1 <- polr(partic ~ log(hincome) + children, data=Womenlf)

R> S(or1)

Re-fitting to get Hessian

Call: polr(formula = partic ~ log(hincome) + children, data = Womenlf)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

log(hincome) -0.666 0.233 -2.86 0.0042

childrenpresent -1.948 0.287 -6.80 0.00000000001

Intercepts (Thresholds):

Estimate Std. Error z value Pr(>|z|)

not.work|parttime -2.747 0.654 -4.20 0.000027

parttime|fulltime -1.837 0.640 -2.87 0.0041

Residual Deviance: 441.12

logLik df AIC BIC

-220.56 4 449.12 463.40

The response variable partic initially has its levels in alphabetical order, which does not correspond
to their natural ordering. We therefore start by reordering the levels to increase from "not.work", to
"parttime" work, to "fulltime" work. The predictors are the numeric variable hincome (husband’s
income), which enters the model in log-scale, and the dichotomous factor children, presence of
children in the household.

The model summary is relatively complex, and is explained in Fox and Weisberg (2019, Sec. 6.9).
Predictor effect plots greatly simplify interpretation of the fitted model:

R> plot(predictorEffects(or1),

+ axes=list(grid=TRUE),

+ lattice=list(key.args=list(columns=1)))

Re-fitting to get Hessian

Re-fitting to get Hessian

39



hincome predictor effect plot

hincome

pa
rt

ic
 (

pr
ob

ab
ili

ty
)

0.2

0.4

0.6

0.8

 0 10 20 30 40

 = partic not.work

0.2

0.4

0.6

0.8
 = partic parttime

0.2

0.4

0.6

0.8
 = partic fulltime

children predictor effect plot

children

pa
rt

ic
 (

pr
ob

ab
ili

ty
)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

absent present

●

●

 = partic not.work
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

●

●

 = partic parttime
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

●

●

 = partic fulltime

Unlike predictor effect plots for generalized linear models, the default scaling for the vertical axis
is the probability scale, equivalent to axes=list(y=list(type="response")) for a GLM, and
the alternative is axes=list(y=list(type="logit")), which is analogous to type="link" for
a GLM.3 Confidence bands are present by default, unless turned off with the argument con-

fint=list(style="none"). Numeric focal predictors are by default evaluated at 50 points. The
plot for hincome suggests high probability of full-time work if husband’s income is low, with the
probability of full-time work sharply decreasing to about $15,000 and then nearly leveling off at
about .1 to .2. The probability of not working rapidly increases with husband’s income, while the
probability of working part time is fairly flat. A similar pattern is apparent for children present
in the home, with full-time work much less prevalent and not working much more prevalent when
children are present than when they are absent.

Stacked area plots are sometimes more useful for examining polytomous response models; for
example:

R> plot(predictorEffects(or1),

+ axes=list(grid=TRUE, y=list(style="stacked")),

+ lattice=list(key.args=list(columns=1)))

Re-fitting to get Hessian

3The logits plotted, however, correspond to the individual-level probabilities and are not the ordered logits in the
definition of the proportional-odds model.

40



Re-fitting to get Hessian

hincome predictor effect plot

hincome

pa
rt

ic
 (

pr
ob

ab
ili

ty
)

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40

fulltime
parttime
not.work

children predictor effect plot

children

pa
rt

ic
 (

pr
ob

ab
ili

ty
)

0.0

0.2

0.4

0.6

0.8

1.0

absent present

fulltime
parttime
not.work

For each fixed value on the horizontal axis, the vertical axis “stacks” the probabilities in the three
response categories. For example, with children absent from the household and hincome set to its
mean, nearly 30% of women did not work outside the home, about 20% worked part time, and the
remaining approximate 50% worked full time.

Some ordinal-response models produced by the functions clm(), clm2(), and clmm() in the
ordinal package can be used with the effects package. To work with model objects produced by
these functions, you must also load the MASS package.

The effects package can also draw similar graphs for the more general multinomial logit model,
in which the polytomous categorical response has unordered levels (see Fox and Weisberg, 2019,
Sec. 6.7). The details of the model, its parameters, and its assumptions are different from those of
the proportional-odds model and other ordered-response models, but predictor effect plots for these
models are similar.

As an example, we use the BEPS data set in the carData package, consisting of about 1,500
observations from the 1997-2001 British Election Panel Study. The response variable, vote, is party
choice, one of "Liberal Democrat", "Labour", or "Conservative". There are numerous predictors
of vote in the data set, and we fit the model

R> library("nnet") # for multinom()

R> mr1 <- multinom(vote ~ age + gender + economic.cond.national +

+ economic.cond.household + Blair + Hague + Kennedy +

+ Europe*political.knowledge, data=BEPS)

# weights: 36 (22 variable)

initial value 1675.383740

iter 10 value 1240.047788

iter 20 value 1163.199642

iter 30 value 1116.519687

final value 1116.519666

converged

41



There are nine predictors, seven of which are scales with values between 0 and 5 concerning respon-
dents’ attitudes; these predictors enter the model as main effects. The remaining two predictors
are scales between 0 and 3 for political.knowledge and between 1 and 11 for Europe (attitude
toward European integration of the UK in the European Union, with high values representing “Eu-
roscepticism”, a negative attitude toward Europe); these predictors enter the model with a two-factor
interaction.

Drawing all nine predictor effect plots simultaneously is not a good idea because the plots won’t
fit reasonably in a single display. We therefore draw only a few of the plots at a time:

R> plot(predictorEffects(mr1, ~ age + Blair + Hague + Kennedy),

+ axes=list(grid=TRUE, x=list(rug=FALSE)),

+ lattice=list(key.args=list(columns=1)),

+ lines=list(multiline=TRUE, col=c("blue", "red", "orange")))

age predictor effect plot

age

vo
te

 (
pr

ob
ab

ili
ty

)

0.2

0.3

0.4

0.5

30 40 50 60 70 80 90

vote
Conservative
Labour
Liberal Democrat

Blair predictor effect plot

Blair

vo
te

 (
pr

ob
ab

ili
ty

)

0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 2 3 4 5

vote
Conservative
Labour
Liberal Democrat

Hague predictor effect plot

Hague

vo
te

 (
pr

ob
ab

ili
ty

)

0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4 5

vote
Conservative
Labour
Liberal Democrat

Kennedy predictor effect plot

Kennedy

vo
te

 (
pr

ob
ab

ili
ty

)

0.2

0.3

0.4

0.5

1 2 3 4 5

vote
Conservative
Labour
Liberal Democrat

We use optional arguments to get a multiline plot, with a grid and no rug plot, and to modify
the key. The color specification for the lines represents the traditional colors of the three parties.
Interpreting these plots is challenging: For example, the probability of voting Labour decreases with
age, increases with attitude toward the Labour leader Blair, strongly decreases with attitude toward
the Conservative leader Hague, and is relatively unaffected by attitude toward the Liberal Democrat
leader Kennedy. In general, a positive attitude toward a party leader increases the probability
of voting for that leader’s party, as one would expect. Of course, the causal direction of these
relationships is unclear.

42



We next turn to the interaction between Europe and political.knowledge, this time drawing
stacked area displays:

R> plot(predictorEffects(mr1, ~ Europe + political.knowledge,

+ xlevels=list(political.knowledge=0:3,

+ Europe=c(1, 6, 11))),

+ axes=list(grid=TRUE,

+ x=list(rug=FALSE,

+ Europe=list(ticks=list(at=c(1, 6, 11))),

+ political.knowledge=list(ticks=list(at=0:3))),

+ y=list(style="stacked")),

+ lines=list(col=c("blue", "red", "orange")),

+ lattice=list(key.args=list(columns=1),

+ strip=list(factor.names=FALSE)))

Europe predictor effect plot

Europe

vo
te

 (
pr

ob
ab

ili
ty

)

0.0

0.2

0.4

0.6

0.8

1.0

 1  6 11

0

 1  6 11

1

 1  6 11

2

 1  6 11

3

Liberal Democrat
Labour
Conservative

political.knowledge predictor effect plot

political.knowledge

vo
te

 (
pr

ob
ab

ili
ty

)

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3

1

0 1 2 3

6

0 1 2 3

11

Liberal Democrat
Labour
Conservative

The lines argument is used to specify the colors for the stacked areas representing the parties.
Both effect plots are of nearly the same fitted values,4 in the first graph with Europe varying and
conditioning on political.knowledge, and in the second with political.knowledge varying and
conditioning on Europe. Setting strip= list(factor.names=FALSE) suppresses the names of the
conditioning predictor in each effect plot; these names are too long for the strips at the tops of
the panels. From the first graph, preference for the Conservative Party increases with Europe for
respondents with high political knowledge, but not for those with low political knowledge. More
generally, voters with high political knowledge are more likely to align their votes with the positions
of the parties, Eurosceptic for the Convervatives, pro-Europe for Labour and the Liberal Democrats,
than are voters with low political knowledge.

6 The Lattice Theme for the effects Package

The effects package uses the xyplot() and barchart() functions in the standard lattice package
(Sarkar, 2008) to draw effect plots. The lattice package has many options for customizing the
appearance of graphs that are collected into a lattice theme. We created a custom theme for use
with the effects package that automatically supersedes the default Lattice theme when the effects
package is loaded, unless the lattice package has been previously loaded. You can invoke the effects
package theme directly by the command

4Not exactly the same because in each plot the focal predictor takes on 50 values and the conditioning predictor
3 or 4 values.

43



R> effectsTheme()

You can also customize the effects package Lattice theme; see help("effectsTheme"). Finally,
because plot() methods in the effects package return lattice objects, these objects can be edited
and manipulated in the normal manner, for example by functions in the latticeExtra package (Sarkar
and Andrews, 2016).

References

Fox, J. and S. Weisberg (2018). Visualizing fit and lack of fit in complex regression models with
predictor effect plots and partial residuals. Journal of Statistical Software 87 (9), 1–27.

Fox, J. and S. Weisberg (2019). An R Companion to Applied Regression (Third ed.). Sage.

Hawkins, D. M. and S. Weisberg (2017). Combining the Box-Cox power and generalised log trans-
formations to accommodate negative responses in linear and mixed-effects linear models. South
African Statistics Journal 51, pp. 317–328.

Sarkar, D. (2008). Lattice: Multivariate Data Visualization With R. Springer Science & Business
Media.

Sarkar, D. and F. Andrews (2016). latticeExtra: Extra Graphical Utilities Based on Lattice. R
package version 0.6-28.

44


	Introduction
	Effects and Predictor Effect Plots
	General Outline for Constructing Predictor Effect Plots
	How predictorEffect() Chooses Conditioning Predictors
	The Effect() Function
	The predictorEffects() Function

	Optional Arguments for the predictorEffect() and Effect() Functions
	focal.levels and xlevels: Options for the Values of the Focal Predictor and Predictors in the Conditioning Group
	fixed.predictors: Options for Predictors in the Fixed Group
	Factor Predictors
	Numeric Predictors

	se and vcov.: Standard Errors and Confidence Intervals
	residuals: Computing Residuals for Partial Residual Plots

	Arguments for Plotting Predictor Effects
	The axes Group: Specify Axis Characteristics
	x: Horizontal Axis Specification
	y: Vertical Axis Specification for Linear Models
	y: Vertical Axis Specification for Generalized Linear Models

	The lines Group: Specifying Plotted Lines
	multiline and z.var: Multiple Lines in a Plot
	col, lty, lwd, spline: Line Color, Type, Width, Smoothness

	The confint Group: Specifying Confidence Interval Inclusion and Style
	The lattice Group: Specifying Standard lattice Package Arguments
	key.args: Modifying the Key
	layout: Controlling Panel Placement
	array: Multiple Predictor Effect Plots
	strip: Modifying the Text at the Tops of Panels

	symbols: Plotting symbols

	Displaying Residuals in Predictor Effect Plots
	Using the Effect() Function With Partial Residuals

	Polytomous Categorical Responses
	The Lattice Theme for the effects Package

