ISTEXML The Manual

A KTEX to XML/HTML/MATHML Converter;
Version 0.8.3

Bruce R. Miller

August 7, 2018

ii

Contents

Contents iii
List of Figures vii
1 Introduction 1
2 Using BTEXML 3
2.1 Conversion e e e e e e e e e e e e e 4
2.2 POSIProcesSing v v v v v i i e e e 5
23 Splitting e 9
2.4 SIES . . .o e e e e e e e e e e e e e 9
2.5 Individual Formula 10
3 Architecture 11
3.1 latexmlarchitecture 11
3.1.1 Digestiono e 12

3.1.2 ConStructionl e e e 13

3.1.3 Rewriting e 13

3.1.4 MathParsing 14

3.1.5 Serialization e 14

3.2 latexmlpost architecture oL 14
4 Customization 15
4.1 LaTeXML Customization 16
4.1.1 Expansion. 16

4.1.2 Digestion 18

4.1.3 Construction ot e e e e e 20

414 DocumentModel 23

415 Rewriting oL 24

4.1.6 Packagesand Options 24

4.1.77 Miscellaneous 25

4.2 latexmlpost Customization 25
421 XSLT e e e 26

422 CSS .. e e e e 26

iii

iv

CONTENTS

Mathematics 29
5.1 MathDetails. 30
5.1.1 Internal Math Representation. 30
5.1.2 Grammatical Roles 32
Localization 35
6.1 Numbering e 35
6.2 InputEncodings 36
6.3 OutputEncodings 36
6.4 Babel 36
Alignments 37
7.1 TEXAlignments e 37
7.2 Tabular Header Heuristics 37
73 MathForks e 38
T4 eqnarray 39
7.5 AMS Alignments 39
Metadata 41
8.1 RDFa e 41
ToDo 43
Commands 47
Al latexml o e e e e 47
A2 latexmlpoSt o i i i e e e 50
A3 latexmlmath e 58
Bindings 63
Modules 65
C.l LaTeXML . . . o v it i e e e e e e e e e e e 65
C2 LaTeXML::Global i i 66
C3 LaTeXML::Package . . . v v v v v v ittt e e e e e e e e 67
C4 LaTeXML::MathParser v v i i, 94
Common Modules 97
D.1 LaTeXML::Common::Config 97
D.2 LaTeXML::Common::0bject 111
D.3 LaTeXML::Common::Color v v v v v v v v ii e .. 113
D4 LaTeXML::Common::Color::rgb v v v v ... 114
D.5 LaTeXML::Common::Color::hsb 114
D.6 LaTeXML::Common::ColOor::Cmy v . v o v oo ... 114
D.7 LaTeXML::Common::Color::cmyk 114
D.8 LaTeXML::Common::Color::gray 115
D.9 LaTeXML::Common::Color::Derived. 115
D.10 LaTeXML: :Common: :NUmMber v . v u.... 115

CONTENTS

D.11 LaTeXML:
D.12 LaTeXML:
D.13 LaTeXML:
D.14 LaTeXML:
D.15 LaTeXML:
D.16 LaTeXML:
D.17 LaTeXML:
D.18 LaTeXML:

Core Modules
E.l
E.2
E.3
E.4
E.5
E.6
E.7
E.8
E.9
E.10
E.11
E.12
E.13
E.14
E.15
E.16
E.17
E.18
E.19
E.20

LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:

E.21
E.22
E.23

LaTeXML:
LaTeXML:
LaTeXML:

E.24
E.25
E.26
E.27

Utility Modules
F.1

LaTeXML:
LaTeXML:
LaTeXML:
LaTeXML:

LaTeXML:
F2 LaTeXML:
F3 LaTeXML:

:Common:
:Common : :
:Common: :
:Common : :
:Common: :
:Common : :
:Common : :
:Common:

:Core::
:Core:
:Core:
:Core:
:Core:
:Core::
:Core::
:Core::
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:
:Core:

:Util::
:Util::
:Util::

Preprocessing Modules

G.1

LaTeXML: :Pre: :BibTeX

:Mouth
:Gullet
:Stomach
:Document

:Box

:List
:Comment
:Whatsit
:Alignment
:KeyVals
:MuDimension
:MuGlue
:Pair
:PairList
:Definition

:Definition:

:Float

:Error

:Definition:
:Definition:
:Definition:
:Definition:
:Definition:
:Parameter

:Parameters

:CharDef

:DTD

:Conditional
:Constructor
:Expandable

:Primitive
:Register

116
116
117
117
118
119
120
120

123
123
126
127
129
131
138
139
140
140
141
141
142
143
143
147
147
148
148
148
149
150
150
150
151
151
152
152

155
155
157
157

159

vi

H Postprocessing Modules

H.1 LaTeXML::Post
H.2 LaTeXML::Post::MathML

I Schema

I.1 Module LaTeXML
.2 Module LaTeXML-common
1.3 Module LaTeXML-inline
1.4 Module LaTeXML-block
1.5 Module LaTeXML-misc
1.6 Module LaTeXML-meta
1.7 Module LaTeXML-para
1.8 Module LaTeXML-math
1.9 Module LaTeXML-tabular
.10 Module LaTeXML-picture

.11 Module LaTeXML-structure

.12 Module LaTeXML-bib

J Error Codes
K CSS Classes

Index

CONTENTS

161

List of Figures

3.1 Flow of data through KIEXML’s digestive tract.

vii

viii LIST OF FIGURES

Chapter 1

Introduction

For many, IZTEX is the preferred format for document authoring, particularly those in-
volving significant mathematical content and where quality typesetting is desired. On
the other hand, content-oriented XML is an extremely useful representation for doc-
uments, allowing them to be used, and reused, for a variety of purposes, not least,
presentation on the Web. Yet, the style and intent of I&TiEX markup, as compared to
XML markup, not to mention its programmability, presents difficulties in converting
documents from the former format to the latter. Perhaps ironically, these difficulties
can be particularly large for mathematical material, where there is a tendency for the
markup to focus on appearance rather than meaning.

The choice of IATEX for authoring, and XML for delivery were natural and uncon-
troversial choices for the Digital Library of Mathematical Functions'. Faced with the
need to perform this conversion and the lack of suitable tools to perform it, the DLMF
project proceeded to develop thier own tool, ISEXML, for this purpose.

Design Goals The idealistic goals of IEXML are:

e Faithful emulation of TgX’s behaviour;

Easily extensible;

Lossless, preserving both semantic and presentation cues;

Use an abstract IXTgX-like, extensible, document type;

Infer the semantics of mathematical content
(Good Presentation MATHML, eventually Content MATHML and OpenMath).

As these goals are not entirely practical, even somewhat contradictory, they are im-
plicitly modified by as much as possible. Completely mimicing TgX’s, and ISIEX’s,
behaviour would seem to require the sneakiest modifications to TgX, itself; redefining
IXTEXs internals does not really guarantee compatibility. “Ease of use” is, of course, in

http://dlmf.nist.gov

2 CHAPTER 1. INTRODUCTION

the eye of the beholder; this manual is an attempt to make it easier! More significantly,
few documents are likely to have completely unambiguous mathematics markup; hu-
man understanding of both the topic and the surrounding text is needed to properly
interpret any particular fragment. Thus, while we’ll try to provide a “turn-key” so-
lution that does the ‘Right Thing’ automatically, we expect that applications requir-
ing high semantic content will require document-specific declarations and tuning to
achieve the desired result. Towards this end, we provide a variety of means to cus-
tomize the processing and declare the author’s intent. At the same time, especially for
new documents, we encourage a more logical, content-oriented markup style, over a
purely presentation-oriented style.

Overview of this Manual Chapter 2 describes the usage of IAIEXML, along with
common use cases and techniques. Chapter 3 describes the system architecture in
some detail. Strategies for customization and implementation of new packages is de-
scribed in Chapter 4. The special considerations for mathematics, including details of
representation and how to improve the conversion, are covered in Chapter 5. Several
specialized topics are covered in the remaining chapters. An overview of outstanding
issues and planned future improvements are given in Chapter 9.

Finally, the Appendices give detailed documentation the system components: Ap-
pendix A describes the command-line programs provided by the system; Appendix B
lists the IATX style packages for which we’ve provided IATEXML-specific bindings.
Appendices C, D, E, F, G and H describes the various Perl modules, in groups, that
comprise the system. Appendix I describes the XML schema used by KIEXML. Ap-
pendix J gives an overview of the warning and error messages that ISIEXML may gen-
erate. Appendix K describes the strategy and naming conventions used for CSS styling
of the resulting HTML.

Using ISTIEXML, and programming for it, can be somewhat confusing as one is deal-
ing with several languages not normally combined, often within the same file, — Perl,
TgX and XML (along with XSLT, HTML, CSS), plus the occasional shell programmming.
To help visually distinguish different contexts in this manual we will put ‘program-
ming’ oriented material (Perl, TgX) in a typewriter font, 1ike this; XML material
will be put in a sans-serif face like this.

If you encounter difficulties, there is a support mailing listat latexml-project?.
Bugs and enhancement requests can be reported at Github®. If all else fails, please
consult the source code, or the author.

%, Danger! When you see this sign, be warned that the material presented is

"\ somewhat advanced and may not make much sense until you have dabbled quite

a bit in ISTEXML’s internals. Such advanced or ‘dangerous’ material will be
presented like this paragraph to make it easier to skip over.

Zhttp://lists.informatik.uni-erlangen.de/mailman/listinfo/latexml
3https://github.com/brucemiller/LaTeXML

Chapter 2

Using IATEXML

The main commands provided by the ISTEXML system are
latexml for converting TgX and BIBTEX sources to XML.

latexmlpost for various postprocessing tasks including conversion to HTML, pro-
cessing images, conversion to MATHML and so on.

The usage of these commands can be as simple as
latexml doc.tex | latexmlpost --dest=doc.html -
to convert a single document into HTMLS5 document, or as complicated as

latexml --dest=1.xml chl
latexml --dest=2.xml ch2

latexml --dest=b.xml b

latexml --dest=B.bib.xml B.bib

latexmlpost --prescan --db=my.db --dest=1.html 1
latexmlpost --prescan --db=my.db --dest=2.html 2

latexmlpost —-prescan —--db=my.db --dest=b.html b

latexmlpost --noscan --db=my.db --dest=1.html 1
latexmlpost --noscan —--db=my.db --dest=2.html 2
latexmlpost -—-noscan —--db=my.db --dest=b.html b

to convert a whole set of documents, including a bibliography, into a complete inter-
connected site.

How best to use the commands depends, of course, on what you are trying to
achieve. In the next section, we’ll describe the use of 1atexml, which performs the
conversion to XML. The following sections consider a sequence of successively more
complicated postprocessing situations, using latexmlpost, by which one or more
TEX sources can be converted into one or more web documents or a complete site.

4 CHAPTER 2. USING BTEXML

Additionally, there is a convenience command latexmlmath for converting in-
dividual formula into various formats.

2.1 Basic XML Conversion

The command
latexml {options} —--destination=doc.xml doc

converts the TEX document doc . tex, or standard input if — is used in place of the file-
name, to XML. It loads any required definition bindings (see below), reads, tokenizes,
expands and digests the document creating an XML structure. It then performs some
document rewriting, parses the mathematical content and writes the result, in this case,
to doc.xml; if no -—destination is suppplied, it writes the result to standard out-
put. For details on the processing, see Chapter 3, and Chapter 5 for more information
about math parsing.

BIBTEX processing If the source file has an explicit extension of .bib, or if the
--bibtex option is used, the source will be treated as a BIBTEX database. See 2.2
for how BIBTEX files are included in the final output.

~w, Note that the timing is different than with BIBTEX and ISIEX. Normally,
“‘:\\ BIBTEX simply selects and formats a subset of the bibliographic entries accord-
ing to the . aux file; all TEX expansion and processing is carried out only when
the result is included in the main IS[EX document. In contrast, latexml processes
and expands the entire bibliography, including any TgX markup within it, when it is
converted to XML; the selection of entries is done during postprocessing. One impli-
cation is that latexml does not know about packages included in the main document; if
the bibliography uses macros defined in such packages, the packages must be explicitly
specified using the ——preload option.

Useful Options The number and detail of progress and debugging messages printed
during processing can be controlled using

—--verbose or —--quiet

They can be repeated to get even more or fewer details.
Directories to search (in addition to the working directory) for various files can be
specified using

—--path={directory}

This option can be repeated.
Whenever multiple sources are being used (including multiple bibliographies), the
option

——documentid=id

2.2. POSTPROCESSING 5

should be used to provide a unique ID for the document root element. This ID is used
as the base for id’s of the child-elements within the document, so that they are unique,
as well.

See the documentation for the command latexml for less common options.

Loading Bindings Although ETEXML is reasonably adept at processing TgX macros,
it generally benefits from having its own implementation of the macros, primitives,
environments and other control sequences appearing in a document because these are
what define the mapping into XML. The IA[ExML-analogue of a style or class file
we call a ISTEXML-binding file, or binding for short; these files have an additional
extension . ltxml.

In fact, since style files often bypass structurally or semantically meaningful macros
by directly invoking macros internal to KTEX, ISIEXML actually avoids processing style
files when a binding is unavailable. The option

——includestyles

can be used to override this behaviour and allow IZTEXML to (attempt to) process raw
style files. [A more selective, per-file, option may be developed in the future, if there
is sufficient demand — please provide use cases.]

KIEXML always starts with the TeX.pool binding loaded, and if I&TEX-specific
commands are recognized, LaTeX.pool as well. Any input directives within the
source loads the appropriate binding. For example, \documentclass{article}
or \usepackage{graphicx} will load the bindings article.cls.ltxml or
graphicx.sty.ltxml, respectively; the obsolete directive \documentstyle is
also recognized. An \ input directive will search for files with both .tex and . sty
extensions; it will prefer a binding file if one is found, but will load and digest a . tex
if no binding is found. An \include directive (and related ones) search only for a
. tex file, which is processed and digested as usual.

There are two mechanisms for customization: a document-specific binding file
doc.latexml will be loaded, if present; the option

——-preload=binding

will load the binding file binding.ltxml. The --preload option can be repeated;
both kinds of preload are loaded before document processing, and are processed in
order.

See Chapter 4 for details about what can go in these bindings; and Appendix B for
a list of bindings currently included in the distribution.

2.2 Basic Postprocessing

In the simplest situation, you have a single TgX source document from which you want
to generate a single output document. The command

latexmlpost options —--destination=doc.html doc

or similarly with ——destination=doc.html4, —~—destination=doc.xhtml, will
carry out a set of appropriate transformations in sequence:

6 CHAPTER 2. USING BTEXML

e scanning of labels and ids;

o filling in the index and bibliography (if needed);

e cross-referencing;

e conversion of math;

e conversion of graphics and picture environments to web format (png);
e applying an XSLT stylesheet.

The output format affects the defaults for each step, and particularly, the XSLT
stylesheet that is used, and is determined by the file extension of --destination, or
by the option

——format=(html |html5|html4|xhtml|xml)

which overrides the extension used in the destination. The recognized formats are:

html or html5 math is converted to Presentation MATHML, some ‘vector’ style
graphics are converted to SVG, other graphics are converted to images;
LaTeXML-html5.xs1t is used. The file extension html is generates html5

html4 both math and graphics are converted to png images; LaTeXML-html4.xslt
is used.

xhtml math is converted to Presentation MATHML, other graphics are converted to
images; LaTeXML—-xhtml .xs1t is used.

xml no math, graphics or XSLT conversion is carried out.

Of course, all of these conversions can be controlled or overridden by explicit options
described below. For more details about less common options, see the command doc-
umentation latexmlpost, as well as Appendix H.

Scanning The scanning step collects information about all labels, ids, indexing com-
mands, cross-references and so on, to be used in the following postprocessing stages.

Indexing An index is built from \index markup, if makeidx’s \printindex
command has been used, but this can be disabled by

—-noindex
The index entries can be permuted with the option
——permutedindex

Thus \index{term a!term Db} alsoshowsupas\index{term b!term a}.
This leads to a more complete, but possibly rather silly, index, depending on how the
terms have been written.

2.2. POSTPROCESSING 7

Bibliography When a document contains a request for bibliographies, typically
due to the \bibliography{..} command, the postprocessor will look for the
named bibliographies. It first looks for preconverted bibliographies with the exten-
tion .bib.xml, otherwise it will look for .bib and convert it internally (the latter is
a somewhat experimental feature).

If you want to override that search, for example using a bibliography with a differ-
ent name, you can supply that filename using the option

——bibliography=bibfile.bib.xml

Note that the internal bibliography list will then be ignored. The bibliography would
have typically been produced by running

latexml --dest=bibfile.bib.xml bibfile.bib

Note that the XML file, bibfile, is not used to directly produce an HTML-formatted bibli-
ography, rather it is used to fill in the \bibliography{ . .} within a TgX document.

Cross-Referencing In this stage, the scanned information is used to fill in the text
and links of cross-references within the document. The option

——urlstyle=(server|negotiated|file)

can control the format of urls with the document.

server formats urls appropriate for use from a web server. In particular, trailing
index.html are omitted. (default)

negotiated formats urls appropriate for use by a server that implements content nego-
tiation. File extensions for html and xhtml are omitted. This enables you to
set up a server that serves the appropriate format depending on the browser being
used.

file formats urls explicitly, with full filename and extension. This allows the files to be
browsed from the local filesystem.

Math Conversion Specific conversions of the mathematics can be requested using
the options

—--mathimages # converts math to png images,
—--presentationmathml or —--pmml # creates Presentation MATHML
—-—contentmathml or —--cmml # creates Content MATHML
——openmath or ——-om # creates OpenMath
—-keepXMath # preserves BIgxML’s XMath

(Each of these options can also be negated if needed, eg. -——nomathimages) It must be
pointed out that the Content MATHML and OpenMath conversions are currently rather
experimental.

If more than one of these conversions are requested, parallel math markup will be
generated with the first format being the primary one, and the additional ones added
as secondary formats. The secondary format is incorporated using whatever means

8 CHAPTER 2. USING BTEXML

the primary format uses; eg. MATHML combines formats using m: semantics and
m:annotation-xml.

Given the state of current browsers, you may wish to use a polyfill such as MathJax'
to support MathML on more platforms. See the example in 2.2 for one way to do it.

Graphics processing Conversion of graphics (eg. from the graphic (s |x) pack-
ages’ \includegraphics) can be enabled or disabled using

——graphicsimages or —-nographicsimages

Similarly, the conversion of picture environments can be controlled with
—-pictureimages or —--nopictureimages

An experimental capability for converting the latter to SVG can be controlled by

-—-sVg Or —-nosvg

Stylesheets and Javascript If you wish to restyle the generated HTML either by
adding CSS or by customizing the XSLT, change its functionality by adding javascript,
or even generate an alternative output format with XSLT, some combination of the fol-
lowing options will be useful.

—-nodefaultresources # Omits the default resources (css..
——css=stylesheet.css # Adds a new CSS stylesheet
—-—javascript=program. js # Adds a Javascript

—-stylesheet=stylesheet.xsl # Uses an alternative XSLT stylesheet
--xsltparameter=name:value # Sets an XSLT parameter

All but —-stylesheet can be repeated to include multiple files or set multiple param-
eters. When a local €SS or javascript file is included, it will be copied to the destination
directory, but otherwise urls are accepted.

The core CSS stylesheet, LaTeXML.css, along with certain styles or classes
(article, report, book, amsart) which add stylesheets automatically, helps
match the styling of I£[EX to HTML. You can also request the inclusion of your own
stylesheets from the commandline using ——css option. Some sample CSS enhance-
ments are included with the distribution:

LaTeXML-navbar-left.css Places a navigation bar on the left.
LaTeXML—navbar—-right.css Places a navigation bar on the left.

LaTeXML-blue.css Colors various features in a soft blue.

In cases where you wish to completely manage the CSS the option —~—nodefaultcss
causes only explicitly requested (command-line) css files to be included.

Javascript files are included in the generated HTML by using the ——javascript
option. The distribution includes a sample LaTeXML-maybeMathjax. js which
is useful for supporting MathML.: it invokes MathJax” to render the mathematics in
browsers without native support for MathML.

http://mathjax.org/
Zhttp://mathjax.org

2.3. SPLITTING 9

—-—javascript=LaTeXML-maybeMathJax. js

The option can also reference a remote script; for example to invoke MathJax uncon-
ditionally from the ‘cloud’:

latexmlpost —--format=html5 \
——-javascript="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=MML_CH
——-destination=somewhere/doc.html doc

See 4.2.2 for more information on developing your own stylesheets. To develop
Css and XSLT stylesheets, a knowledge of the XTEXML document type is also neces-
sary; see Appendix [.

Individual XSLT stylesheets may have parameters that can customize the conversion
from ETEXML’s XML to the target format. An obscure example is

——xsltparameter=SIMPLIFY_ HTML:true

which causes a ‘simpler’ HTML to be generated. Generally, KTEXML’s HTML relies on
CSS to recreate the appearance of many features of I&TEX, but this sometimes results
in somewhat convoluted HTML that may not be ideal in situations where CSS is not
available. This parameter ‘dumbs down’ itemizations and enumerations by ignoring
any custom item labels or numbers.

2.3 Splitting the Output

For larger documents, it is often desirable to break the result into several interlinked
pages. This split, carried out before scanning, is requested by

—--splitat=level

where level is one of chapter, section, subsection, or subsubsection.
For example, section would split the document into chapters (if any) and sections,
along with separate bibliography, index and any appendices. (See also ——splitxpath
in latexml.) The removed document nodes are replaced by a Table of Contents.

The extra files are named using either the id or label of the root node of each new
page document according to

——-splitnaming=(id|idrelative|label|labelrelative)

The relative foms create shorter names in subdirectories for each level of splitting. (See
also ——urlstyle and ——documentidin latexml.)

Additionally, the index and bibliography can be split into separate pages according
to the initial letter of entries by using the options

—-—-splitindex and --splitbibliography

2.4 Site processing

A more complicated situation combines several TeX sources into a single interlinked
site consisting of multiple pages and a composite index and bibliography.

10 CHAPTER 2. USING BTEXML

Conversion First, all TgX sources must be converted to XML, using 1atexml. Since
every target-able element in all files to be combined must have a unique identi-
fier, it is useful to prefix each identifier with a unique value for each file. The
latexml option --documentid=1id provides this.

Scanning Secondly, all XML files must be split and scanned using the command
latexmlpost —--prescan --dbfile=DB --dest=i.xhtml 1

where DB names a file in which to store the scanned data. Other conversions,
including writing the output file, are skipped in this prescanning step.

Pagination Finally, all XML files are cross-referenced and converted into the final for-
mat using the command

latexmlpost --noscan --dbfile=DB --dest=i.xhtml i1

which skips the unnecessary scanning step.

2.5 Individual Formula

For cases where you’d just like to convert a single formula to, say, MATHML, and
don’t mind the overhead, we’ve combined the pre- and post-processing into a single,
handy, command 1atexmlmath. For example,

latexmlmath --pmml=- \\frac{b\\pm\\sqrt{b“"2-4ac}}{2a}

will print the MATHML to standard output. To convert the formula to a png image,
say quad.png, use the option ~—mathimage=quad.png.

Note that this involves putting TgX code on the command line. You’ve got to
‘slashify’ your code in whatever way is necessary so that after your shell is finished
with it, the string that is passed to latexmlmath sees is normal TgX. In the example
above, in most unix-like shells, we only needed to double-up the backslashes.

Chapter 3

Architecture

As has been said, IXTEXML consists of two main programs: latexml responsible for
converting the TgX source into XML; and latexmlpost responsible for converting
to target formats. See Figure 3.1 for illustration.

The casual user needs only a superficial understanding of the architecture. The
programmer who wants to extend or customize IZTEXML will, however, need a fairly
good understanding of the process and the distinctions between text, Tokens, Boxes,
Whatsits and XML, on the one hand, and Macros, Primitives and Constructors, on the
other. In a way, the implementer of a XTExXML binding for a IXTEX package may need a
better understanding than when implementing for I&IEX since they have to understand
not only the TgX-view, primarily just the macros and the intended appearance, but also
the ISTEXML-view, with XML and representation questions, aw well.

The intention is that all semantics of the original document is preserved by
latexml, or even inferred by parsing; latexmlpost is for formatting and conver-
sion. Depending on your needs, the KTIEXML document resulting from 1atexml may
be sufficient. Alternatively, you may want to enhance the document by applying third
party programs before postprocessing.

3.1 latexml architecture

Like TgX, latexml is data-driven: the text and executable control sequences
(ie. macros and primitives) in the source file (and any packages loaded) direct the
processing. For IATEXML, the user exerts control over the conversion, and customizes
it, by providing alternative bindings of the control sequences and packages, by declar-
ing properties of the desired document structure, and by defining rewrite rules to be
applied to the constructed document tree.

The top-level class, LaTeXML, manages the processing, providing several meth-
ods for converting a TgX document or string into an XML document, with varying
degrees of postprocessing and writing the document to file. It binds a (LaTeXML: :
Core: :) State object (to $STATE)to maintain the current state of bindings for con-
trol sequence definitions and emulates TgX’s scoping rules. The processing is broken

11

12 CHAPTER 3. ARCHITECTURE

EXTEX

Document atex
latexml latexmlipost
'n 1aractars T +
Mouth Intestines
¥ 9y 3
Gullet Rewriter Postprocessor
Y L
Stomach Serializer
+*
Y
Output
-
‘ ! Other| =
I I){‘“ |
DVI LY XML % p HTML i
. Document e et
Documant mXH'I'I'-'IL h
+MathML
Document

Figure 3.1: Flow of data through I£IEXML’s digestive tract.

into the following stages

Digestion the TgX-like digestion phase which converts the input into boxes.
Construction converts the resulting boxes into an XML DOM.

Rewriting applies rewrite rules to modify the DOM.

Math Parsing parses the tokenized mathematics.

Serialization converts the XML DOM to a string, or writes to file.

3.1.1 Digestion

Digestion is carried out primarily in a pull mode: The (LaTeXML::Core::)
Stomach pulls expanded (LaTeXML: :Core: :) Tokens from the (LaTeXML: :
Core::)Gullet, which itself pulls Tokens from the (LaTeXML: :Core::)

3.1. LATEXML ARCHITECTURE 13

Mouth. The Mouth converts characters from the plain text input into Tokens ac-
cording to the current catcodes (category codes) assigned to them (as bound in the
State). The Gullet is responsible for expanding Macros, that is, control sequences
currently bound to (LaTeXML: :Core: :Definition: :)Expandables and for
parsing sequences of tokens into common core datatypes ((LaTeXML: : Common: :)
Number, (LaTeXML: :Common: :)Dimension, etc.). See 4.1.1 for how to define
macros and affect expansion.

The Stomach then digests these tokens by executing (LaTeXML::Core::
Definition::)Primitive control sequences, usually for side effect, but of-
ten for converting material into (LaTeXML: :Core::)Lists of (LaTeXML: :
Core::)Boxesand (LaTeXML: :Core: :)Whatsits (A Macro should never di-
gest). Normally, textual tokens are converted to Boxes in the current font. The
main (intentional) deviation of IATEXML’s digestion from that of TgX is the intro-
duction of a new type of definition, a (LaTeXML: :Core::Definition::)
Constructor, responsible for constructing XML fragments. A control sequence
bound to Constructor is digested by reading and processing its arguments and
wrapping these up in a What sit. Before- and after-daemons, essentially anonymous
primitives, associated with the Constructor are executed before and after digesting
the Constructor arguments’ markup, which can affect the context of that digestion,
as well as augmenting the What sit with additional properties. See 4.1.2 for how to
define primitives and affect digestion.

3.1.2 Construction

Given the List of Boxes and Whatsits, we proceed to constructing an XML doc-
ument. This consists of creating an (LaTeXML: :Core: :)Document object, con-
taining a libxml2 document, XML: : LibXML: : Document, and having it absorb the
digested material. Absorbing a Box converts it to text content, with provision made
to track and set the current font. A Whatsit is absorbed by invoking the associated
Constructor to insert an appropriate XML fragment, including elements and at-
tributes, and recursively processing their arguments as necessary See 4.1.3 for how to
define constructors.

A (LaTeXML: : Common: :) Model is maintained througout the digestion phase
which accumulates any document model declarations, in particular the document type
(RelaxNG is preferred, but DTD is also supported). As IATEX markup is more like
SGML than XML, additional declarations may be used (see Tag in (LaTeXML: :)
Package) to indicate which elements may be automatically opened or closed when
needed to build a document tree that matches the document type. As an example, a
<subsection> will automaticall be closed when a <section> is begun. Additionally,
extra bits of code can be executed whenever particularly elements are openned or closed
(also specified by Tag). See 4.1.4 for how to affect the schema.

3.1.3 Rewriting

Once the basic document is constructed, (LaTeXML: :Core: :)Rewrite rules are
applied which can perform various functions. Ligatures and combining mathematics

http://search.cpan.org/search?query=XML::LibXML::Document&mode=module

14 CHAPTER 3. ARCHITECTURE

digits and letters (in certain fonts) into composite math tokens are handled this way.
Additionally, declarations of the type or grammatical role of math tokens can be applied
here See 4.1.5 for how to define rewrite rules.

3.1.4 MathParsing

After rewriting, a grammar based parser is applied to the mathematical nodes in order
to infer, at least, the structure of the expressions, if not the meaning. Mathematics
parsing, and how to control it, is covered in detail in Chapter 5.

3.1.5 Serialization

Here, we simple convert the DOM into string form, and output it.

3.2 latexmlpost architecture

ISTEXML’s postprocessor is primarily for format conversion. It operates by applying a
sequence of filters responsible for transforming or splitting documents, or their parts,
from one format to another.

Exactly which postprocessing filter modules are applied depends on the command-
line options to 1atexmlpost. Postprocessing filter modules are generally applied in
the following order:

Split splits the document into several ‘page’ documents, according to ——split or
--splitxpath options.

Scan scans the document for all ID’s, labels and cross-references. This data may be
stored in an external database, depending on the ——db option.

Makelndex fills in the index element (due to a \printindex) with material gener-
ated by index.

MakeBibliography fills in the bibliography element (from \bibliography) with
material extracted from the file specified by the ——bibilography option, for
all \cite’d items.

CrossRef establishes all cross-references between documents and parts thereof, filling
in the references with appropriate text for the hyperlink.

MathImages, MathML, OpenMath performs various conversions of the internal
Math representation.

PictureImages, Graphics, SVG performs various graphics conversions.
XSLT applies an XSLT transformation to each document.
Writer writes the document to a file in the appropriate location.

See 4.2 for how to customize the postprocessing.

Chapter 4

Customization

The processsing of the IATEX document, its conversion into XML and ultimately to
XHTML or other formats can be customized in various ways, at different stages of
processing and in different levels of complexity. Depending on what you are trying
to achieve, some approaches may be easier than others: Recall Larry Wall’s adage
“There’s more than one way to do it.”

By far, the easiest way to customize the style of the output is by modifying the CSS,
see 4.2.2, so that is the recommended way when it applies.

The basic conversion from TgX markup to XML is done by latexml, and is ob-
viously affected by the mapping between the TgX markup and the XML markup. This
mapping is defined by macros, primitives and, of course, constructors; The mapping
that is in force at any time is determined by the IXIEXML-specific implementations of
the TEX packages involved, what we call ‘bindings’. Consequently, you can customize
the conversion by modifying the bindings used by latexml.

Likewise, you extend latexml by creating bindings for TgX styles that hadn’t
been covered.

Or by defining your own TgX style file along with it’s ISIEXML binding.

In all these cases, you’ll need the same skills: understanding and using text, tokens,
boxes and whatsits, as well as macros and macro expansion, primitives and digestion,
and finally whatsits and constructors. Understanding TgX helps; reading the IXIEXML
bindings in the distribution will give an idea of how we use it. To teach IZTEXML about
new macros, to implement bindings for a package not yet covered, or to modify the
way TgX control sequences are converted to XML, you will want to look at 4.1. To
modify the way that XML is converted to other formats such as HTML, see 4.2.

A particularly powerful strategy when you have control over the source documents
is to develop a semantically oriented I&IEX style file, say smacros.sty, and then
provide a ISIEXML binding as smacros.sty.ltxml. In the XX version, you may
style the terms as you like; in the ISIEXML version, you could control the conversion
so as to preserve the semantics in the XML. If ISIEXML’s schema is insufficient, then
you would need to extend it with your own representation; although that is beyond the
scope of the current manual, see the discussion below in 4.1.4. In such a case, you
would also need to extend the XSLT stylesheets, as discussed in 4.2.1.

15

16 CHAPTER 4. CUSTOMIZATION

4.1 LaTeXML Customization

This layer of customization deals with modifying the way a ISTgX document is trans-
formed into IXTEXML’s XML, primarily through defining the way that control sequences
are handled. In 2.1 the loading of various bindings was described. The facilities
described in the following subsections apply in all such cases, whether used to cus-
tomize the processing of a particular document or to implement a new ISIEX package.
We make no attempt to be comprehensive here; please consult the documentation for
(LaTeXML: :) Global and Package, as well as the binding files included with the
system for more guidance.

A ETEXML binding is actually a Perl module, and as such, a familiarity with Perl is
helpful. A binding file will look something like:

use LaTeXML: :Package;
use strict;

use warnings;

Your code here!

1;

The final ‘1’ is required; it tells Perl that the module has loaded successfully. In be-
tween, comes any Perl code you wish, along with the definitions and declarations as
described here.

Actually, familiarity with Perl is more than merely helpful, as is familiarity with
TgX and XML! When writing a binding, you will be programming with all three lan-
guages. Of course, you need to know the TgX corresponding to the macros that you
intend to implement, but sometimes it is most convenient to implement them com-
pletely, or in part, in TgX, itself (eg. using DefMacro), rather then in Perl. At the
other end, constructors (eg. using DefConstructor) are usually defined by patterns
of XML.

4.1.1 Expansion & Macros

DefMacro (Sprototype, Sreplacement, $options) Macros are defined
using DefMacro, such as the pointless:

DefMacro (' \mybold{}’,’ \textbf{#1}’);

The two arguments to DefMacro we call the prototype and the replacement. In the
prototype, the {} specifies a single normal TgX parameter. The replacement is here
a string which will be tokenized and the #1 will be replaced by the tokens of the
argument. Presumably the entire result will eventually be further expanded and or
processed.

Whereas, TEX normally uses #1, and IXTEX has developed a complex scheme where
it is often necessary to peek ahead token by token to recognize optional arguments, we
have attempted to develop a suggestive, and easier to use, notation for parameters.
Thus a prototype \foo{} specifies a single normal argument, wheere \foo[] {}
would take an optional argument followed by a required one. More complex argument

4.1. LATEXML CUSTOMIZATION 17

prototypes can be found in Package. As in TgX, the macro’s arguments are neither
expanded nor digested until the expansion itself is further expanded or digested.

The macro’s replacement can also be Perl code, typically an anonymous sub,
which gets the current Gullet followed by the macro’s arguments as its arguments.
It must return a list of Token’s which will be used as the expansion of the macro. The
following two examples show alternative ways of writing the above macro:

DefMacro (' \mybold{}’, sub {
my (Sgullet, $Sarg)=0Q_;
(T_CS (' \textbf’),T_BEGIN, $Sarg, T_END); });

or alternatively

DefMacro (' \mybold{}’, sub ({
Invocation (T_CS (' \textbf’),$_[11); });

Generally, the body of the macro should not involve side-effects, assignments or other
changes to state other than reading Token’s from the Gullet; of course, the macro
may expand into control sequences which do have side-effects.

Tokens, Catcodes and friends Functions that are useful for dealing with Tokens
and writing macros include the following:

e Constants for the corresponding TEX catcodes:

CC_ESCAPE, CC_BEGIN, CC_END, CC_MATH,
CC_ALIGN, CC_EOL, CC_PARAM, CC_SUPER,
CC_SUB, CC_IGNORE, CC_SPACE, CC_LETTER,

CC_OTHER, CC_ACTIVE, CC_COMMENT, CC_INVALID

o Constants for tokens with the appropriate content and catcode:

T_BEGIN, T_END, T MATH, T _ALIGN, T_PARAM,
T_SUB, T_SUPER, T_SPACE, T_CR

e T_LETTER ($char), T_OTHER (Schar), T_ACTIVE ($char), create tokens of
the appropriate catcode with the given text content.

e T_CS(Scs) creates a control sequence token; the string $cs should typically
begin with the slash.

e Token ($string, $catcode) creates a token with the given content and cat-
code.

e Tokens ($token, ...) createsa (LaTeXML: :Core: :) Tokens object con-
taining the list of Tokens.

e Tokenize ($string) converts the string to a Tokens, using TgX’s standard
catcode assignments.

e TokenizelInternal ($string) like Tokenize, but treating @ as a letter.

18 CHAPTER 4. CUSTOMIZATION

e Explode ($string) converts the string to a Tokens where letter character are
given catcode CC_OTHER.

e Expand ($tokens expands $tokens (a Tokens), returning a Tokens; there
should be no expandable tokens in the result.

e Invocation ($cstoken, $arg, ...) Returns a Tokens representing the se-
quence needed to invoke $cstoken on the given arguments (each are Tokens,
or undef for an unsupplied optional argument).

4.1.2 Digestion & Primitives

Primitives are processed during the digestion phase in the St omach, after macro ex-
pansion (in the Gullet), and before document construction (in the Document). Our
primitives generalize TgX’s notion of primitive; they are used to implement TgX’s prim-
itives, invoke other side effects and to convert Tokens into Boxes, in particular, Unicode
strings in a particular font.

Here are a few primitives from TeX.pool:

DefPrimitive (' \begingroup’,sub {
$_[0]->begingroup; 1});

DefPrimitive (' \endgroup’, sub {
$_[0]->endgroup; });

DefPrimitivel (' \batchmode’, undef, undef) ;
DefPrimitiveI (' \OE’, undef, "\x{0152}");
DefPrimitiveI (' \tiny’, undef, undef,

font=>{size=>5});

Other than for implementing TEX’s own primitives, DefPrimitive is needed
less often than DefMacro or DefConstructor. The main thing to keep in mind is
that primitives are processed after macro expansion, by the St omach. They are most
useful for side-effects, changing the State.

DefPrimitive ($prototype, Sreplacement, $options) The replace-
ment is either a string which will be used to create a Box in the current font, or can
be code taking the St omach and the control sequence arguments as argument; like
macros, these arguments are not expanded or digested by default, they must be ex-
plicitly digested if necessary. The replacement code must either return nothing (eg.
ending with return;) or should return a list (ie. a Perl list (.. .)) of digested Boxes
or Whatsits.
Options to DefPrimitive are:

e mode=> (‘math’ |’ text’) switches to math or text mode, if needed;

® requireMath=>1, forbidMath=>1 requires, or forbids, this primitive to ap-
pear in math mode;

e bounded=>1 specifies that all digestion (of arguments and daemons) will take
place within an implicit TgX group, so that any side-effects are localized, rather
than affecting the global state;

4.1. LATEXML CUSTOMIZATION 19

e font=>{hash} switches the font used for any created text; recognized font keys
are family, series, shape, size, color;

Note that if the font change should only affect the material digested within this
command itself, then bounded=>1 should be used; otherwise, the font change
will remain in effect after the command is processed.

® beforeDigest=>CODE ($stomach),
afterDigest=>CODE ($stomach) provides code to be digested before and af-
ter processing the main part of the primitive.

DefRegister(...) Needs descrition!

Other Utilities for Digestion Other functions useful for dealing with digestion and
state are important for writing before & after daemons in constructors, as well as in
Primitives; we give an overview here:

e Digest ($tokens) digests Stokens (a (LaTeXML: :Core: :) Tokens), re-
turning a list of Boxes and Whatsits.

e Let (Stokenl, $token2) gives Stokenl the same meaning as $token2, like
\let.

Bindings The following functions are useful for accessing and storing information
in the current St ate. It maintains a stack-like structure that mimics TgX’s approach
to binding; braces { and } open and close stack frames. (The Stomach methods
bgroup and egroup can be used when explicitly needed.)

e LookupValue ($symbol),AssignValue (Sstring, Svalue, $scope) main-
tain arbitrary values in the current State, looking up or assigning the current
value bound to $symbol (a string). For assignments, the $scope can be
"local’ (the default, if $scope is omitted), which changes the binding in
the current stack frame. If $scope is " global’, it assigns the value globally
by undoing all bindings. The $scope can also be another string, which indicates
a named scope — but that is a more advanced topic.

e PushValue ($symbol, $value, ...), PopValue ($symbol),
UnshiftValue ($symbol, $value,...), ShiftValue (Ssymbol) These
maintain the value of $symbol as a list, with the operatations having the same
sense as in Perl; modifications are always global.

® LookupCatcode ($char), AssignCatcode ($char, $Scatcode, $scope)
maintain the catcodes associated with characters.

e LookupMeaning ($token), LookupDefinition ($token) looks up the
current meaning of the token, being any executable definition bound for
it. If there is no such defniition LookupMeaning returns the token itself,
LookupDefinition returns undef.

20 CHAPTER 4. CUSTOMIZATION

Counters The following functions maintain I&TgX-like counters, and generally also
associate an ID with them. A counter’s print form (ie. \theequation for equations)
often ends up on the refnum attribute of elements; the associated ID is used for the
xml:id attribute.

e NewCounter (Sname, Swithin, options), creates a I&IgX-style counters.
When swithin is used, the given counter will be reset whenever the counter
$within is incremented. This also causes the associated ID to be prefixed with
$within’s ID. The option idprefix=>$string causes the ID to be prefixed
with that string. For example,

NewCounter (' section’, ’document’, idprefix=>’S’);
NewCounter (' equation’,’document’, idprefix=>'E’,
idwithin=>’section’);

would cause the third equation in the second section to have ID="S2.E3'.
e CounterValue ($name) returns the Number representing the current value.
e ResetCounter ($name) resets the counter to 0.

e StepCounter ($Sname) steps the counter (and resets any others ‘within’ it), and
returns the expansion of \the$name.

e RefStepCounter ($name) steps the counter and any ID’s associated with it. It
returns a hash containing re fnum (expansion of \the$name) and id (expan-
sion of \the$name@ID)

e RefStepID ($name) steps the ID associated with the counter, without actually
stepping the counter; this is useful for unnumbered units that normally would
have both a refnum and ID.

4.1.3 Construction & Constructors

Constructors are where things get interesting, but also complex; they are responsible for
defining how the XML is built. There are basic constructors corresponding to normal
control sequences, as well as environments. Mathematics generally comes down to
constructors, as well, but is covered in Chapter 5.

Here are a couple of trivial examples of constructors:

DefConstructor (' \emph{}’,
"<ltx:emph>#1</ltx:emph>", mode=>'text’);
DefConstructor (' \item[]’,
"<ltx:item>?#1 (<ltx:tag>#1</ltx:tag>)");
DefEnvironment (' {quote}’,
"<ltx:quote>#body</ltx:quote>’,
beforeDigest=>sub{ Let (' \\\\’,’\@block@ecr’);});
DefConstructor (' \footnote[]{}’,
"<ltx:note_class=’footnote’ mark='4#refnum’ >#2</ltx:note>",
mode=>'text’,

4.1. LATEXML CUSTOMIZATION 21

properties=> sub {
($_[1]1 ? (refnum=>$_[1]) : RefStepCounter (' footnote’)) 1});

DefConstructor (Sprototype, Sreplacement, $options) The $replacement
for a constructor describes the XML to be generated during the construction phase. It
can either be a string representing the XML pattern (described below), or a subroutine
CODE ($document, $argl, ...props) receiving the arguments and properties from
the Whatsit; it would invoke the methods of Document to construct the desired
XML.

At its simplest, the XML pattern is a just serialization of the desired XML. For more
expressivity, XML trees, text content, attributes and attribute values can be effectively
‘interpolated’ into the XML being constructed by use of the following expressions:

e #1,#2,...#%name% returns the construction of the numbered argument or named

property of the Whatsit;
® sfunction(argl,arg2, ...) invokes the Perl function on the given argu-
ments, argl,..., returning the result. The arguments should be expressions for

values, rather than XML subtrees.

® ?test(if pattern) Or ?test(if pattern) (else pattern) returns the
result of either the i f or else pattern depending on whether the result of test
(typically also an expression) is non-empty;

e Yexpression returns a hash (or rather assumes the result is a hash or KeyVals
object); this is only allowed within an opening XML tag, where all the key-value
pairs are inserted as attributes;

e " if this appears at the beginning of the pattern, the replacement is allowed to
float up the current tree to whereever it might be allowed;

In each case, the result of an expression is expected to be either an XML tree, a string
or a hash, depending on the context it was used in. In particular, values of attributes are
typically given by quoted strings, but expressions within those strings are interpolated
into the computed attribute value. The special characters @ # ? % which introduce
these expressions can be escaped by preceding with a backslash, when the literal char-
acter is desired.

A subroutine used as the Sreplacement, allows programmatic insertion of XML
into, or modification of, the document being constructed. Although one could use
LibXML’s DOM API to manipulate the document tree, it is strongly recommended
to use Document’s API whereever possible as it maintains consistency and manages
namespace prefixes. This is particularly true for insertion of new content, setting at-
tributes and finding existing nodes in the tree using XPath.

Options:

e mode=> (‘math’ |’ text’) switches to math or text mode, if needed;

® requireMath=>1, forbidMath=>1 requires, or forbids, this constructor to ap-
pear in math mode;

22

CHAPTER 4. CUSTOMIZATION

e bounded=>1 specifies that all digestion (of arguments and daemons) will take
place within an implicit TgX group, so that any side-effects are localized, rather
than affecting the global state;

e font=>{hash} switches the font used for any created text; recognized font keys
are family, series, shape, size, color;

e properties=> {hash} | CODE (S$stomach, Sargl,..). provides a set
of properties to store in the Whatsit for eventual use in the constructor
Sreplacement. If a subroutine is used, it also should return a hash of proper-
ties;

® beforeDigest=>CODE ($stomach),
afterDigest=>CODE ($stomach, $whatsit) provides code to be digested
before and after digesting the arguments of the constructor, typically to alter the
context of the digestion (before), or to augment the properties of the Whatsit
(after);

® beforeConstruct=>CODE ($document, Swhatsit),
afterConstruct=>CODE ($document, $Swhatit) provides code to be run be-
fore and after the main Sreplacement is effected; occassionaly it is convenient
to use the pattern form for the main $replacement, but one still wants to exe-
cute a bit of Perl code, as well;

® captureBody=>(1 | Stoken) specifies that an additional argument (like an
environment body) wiil be read until the current TgX grouping ends, or until the
specified $token is encountered. This argument is available to $replacement
as Sbody;

® scope=>(’global’|’local’ |$name) specifies whether this definition is
made globally, or in the current stack frame (default), (or in a named scope);

® reversion=>$string|CODE(...), alias=>$cs can be used when the
Whatsit needs to be reverted into TEX code, and the default of simply re-
assembling based on the prototype is not desired. See the code for examples.

Some additional functions useful when writing constructors:

e ToString ($stuff) converts $stuff to a string, hopefully without TgX
markup, suitable for use as document content and attribute values. Note that
if $stuff contains Whatsits generated by Constructors, it may not be possible
to avoid TeX code. Constrast ToString to the following two functions.

e UnTeX ($stuff) returns a string containing the TgX code that would generate
$stuff (this might not be the original TgX). The function Revert ($stuff)
returns the same information as a Tokens list.

e Stringify ($stuff) returns a string more intended for debugging purposes; it
reveals more of the structure and type information of the object and its parts.

4.1. LATEXML CUSTOMIZATION 23

® Cleanlabel ($arg), CleanIndexKey ($Sarg), CleanBibKey ($arg),
CleanURL ($arg) cleans up arguments (converting to string, handling invalid
characters, etc) to make the argument appropriate for use as an attribute repre-
senting a label, index ID, etc.

e UTF ($hex) returns the Unicode character for the given codepoint; this is useful
for characters below 0x100 where Perl becomes confused about the encoding.

DefEnvironment($prototype, $replacement,%options) Environments are largely a
special case of constructors, but the prototype starts with {envname}, rather than
\ cmd, the replacement will also typically involve #body representing the contents of
the environment.

DefEnvironment takes the same options as DefConstructor, with the ad-
dition of

® afterDigestBegin=>CODE ($stomach, $whatsit) prOVideS code to digest
after the \begin{env} is digested;

® beforeDigestEnd=>CODE ($stomach) provides code to digest before the
\end{env} is digested.

For those cases where you do not want an environment to correspond to a con-
structor, you may still (as in I&TEX), define the two control sequences \envname and
\endenvname as you like.

4.1.4 Document Model

The following declarations are typically only needed when customizing the schema
used by KTEXML.

e RelaxNGSchema ($schema, namespaces) declares the created XML docu-
ment should be fit to the RelaxXNG schema in $schema; A file $schema.rng
should be findable in the current search paths. (Note that currently, IXIEXML is
unable to directly parse compact notation).

® RegisterNamespace (Sprefix, Surl) associates the prefix with the given
namespace url. This allows you to use $Sprefix as a namespace prefix when
writing Constructor patterns or XPath expressions.

e Tag (Stag, properties) specifies properties for the given XML $tag. Rec-
ognized properties include: autoOpen=>1 indicates that the tag can automat-
ically be opened if needed to create a valid document; autoClose=>1 in-
dicates that the tag can automatically be closed if needed to create a valid
document; afterOpen=>$code specifies code to be executed before opening
the tag; the code is passed the Document being constructed as well as the
Box (or Whatsit) responsible for its creation; afterClose=>code similar
to afterOpen, but executed after closing the element.

24 CHAPTER 4. CUSTOMIZATION

4.1.5 Rewriting

The following functions are a bit tricky to use (and describe), but can be quite useful in
some circumstances.

Defligature (Sregexp, $options) applies a regular expression to substitute
textnodes after they are closed; the only option is fontTest=>$code which restricts
the ligature to text nodes where the current font passes & Scode ($Sfont).

DefMathLigature (Scode, $options) allows replacement of sequences of
math nodes. It applies $code to the current Document and each sequence of math
nodes encountered in the document; if a replacement should occur, $code should re-
turn a list of the form ($n, $string, attributes) in which case, the text content of
the first node is replaced by $string, the given attributes are added, and the following
$n-1 nodes are removed.

DefRewrite(%spec) defines document rewrite rules. These specifications describe
what document nodes match:

e label=>$label restricts to nodes contained within an element whose labels
includes $label;

e scope=>$scope generalizes label; the most useful form a string like
"section:1.3.2’ where it matches the section element whose refnum
is1.3.2;

e xpath=>$xpath selects nodes matching the given XPath;

e match=>$tex selects nodes that look like what processing the TgX string $tex
would produce;

e regexp=>S$regexp selects text nodes that match the given regular expression.
The following specifications describe what to do with the matched nodes:
e attributes=>{attr} adds the given attributes to the matching nodes;

e replace=>$tex replaces the matching nodes with the result of processing the
TEX string Stex.

4.1.6 Packages and Options

The following declarations are useful for defining ISTEXML bindings, including option
handling. As when defining IATgX packages, the following, if needed at all, need to
appear in the order shown.

e DeclareOption ($option, $handler) specifies the handler for $option
when it is passed to the current package or class. If $option is undef, it de-
fines the default handler, for options that are otherwise unrecognized. shandler
can be either a string to be expanded, or a sub which is executed like a primitive.

4.2. LATEXMLPOST CUSTOMIZATION 25

e PassOptions ($name, Stype, Goptions) specifies that the given options
should be passed to the package (if $type is sty) or class (if stype is cls)
$name, if it is ever loaded.

e ProcessOptions (keys) processes any options that have been passed to the
current package or class. If inorder=>1 is specified, the options will be pro-
cessed in the order passed to the package (\ProcessOptionsx); otherwise
they will be processed in the declared order (\ProcessOptions).

e ExecuteOptions (Qoptions) executes the handlers for the specific set of op-
tions @options.

e RequirePackage (Spkgname, keys) loads the specified package. The key-
word options have the following effect: options=>$options can provide
an explicit array of string specifying the options to pass to the package;
withoptions=>1 means that the options passed to the currently loading class or
package should be passed to the requested package; type=>$ext specifies the
type of the package file (default is sty); raw=>1 specifies that reading the raw
style file (eg. pkg.sty) is permissible if there is no specific IKTIEXML binding
(eg. pkg.sty.ltxml) after=>S$after specifies a string or (LaTeXML: :
Core: :) Tokens to be expanded after the package has finished loading.

e LoadClass (Sclassname, keys) Similar to RequirePackage, but loads a
class file (type=>’cls’).

e AddToMacro ($cstoken, Stokens) a little used utilty to add material to the
expansion of $cstoken, like an \edef; typically used to add code to a class or
package hook.

4.1.7 Miscellaneous

Other useful stuff:

e RawTeX ($texstring) expands and processes the $texstring; This is typ-
ically useful to include definitions copied from a TgX stylefile, when they are
approriate for ISIEXML, as is. Single-quoting the stexstring is useful, since it
isn’t interpolated by Perl, and avoids having to double all the slashes!

4.2 latexmlpost Customization

The current postprocessing framework works by passing the document through a se-
quence of postprocessing filter modules. Each module is responsible for carrying out
a specific transformation, augmentation or conversion on the document. In principle,
this architecture has the flexibility to employ new filters to perform new or customized
conversions. However, the driver, latexmlpost, currently provides no convenient
means to instanciate and incorporate outside filters, short of developing your own spe-
cialized version.

26 CHAPTER 4. CUSTOMIZATION

Consequently, we will consider custom postprocessing filters outside the scope of
this manual (but of course, you are welcome to explore the code, or contact us with
suggestions).

The two areas where customization is most practical is in altering the XSLT trans-
forms used and extending the CSS stylesheets.

4.2.1 XSLT

KTEXML provides stylesheets for transforming its XML format to XHTML and HTML.
These stylesheets are modular with components corresponding to the schema modules.
Probably the best strategy for customizing the transform involves making a copy of
the standard base stylesheets, LaTeXML-xhtml.xsl, LaTeXML-html.xsl and
LaTeXML-html5.xs1, found at installationdir/LaTeXML/style/ — they're
short, consisting mainly of an xs1:include and setting appropriate parameters and
output method; thus modifying the parameters and and adding your own rules, or in-
cluding your own modules should be relatively easy.

Naturally, this requires a familiarity with IAT[EXML’s schema (see I), as well as
XSLT and XHTML. See the other stylesheet modules in the same directory as the base
stylesheet for guidance. Generally the strategy is to use various parameters to switch
between common behaviors and to use templates with modes that can be overridden
in the less common cases.

Conversion to formats other than XHTML are, of course, possible, as well, but are
neither supplied nor covered here. How complex the transformation will be depends
on the extent that the IATEXML schema can be mapped to the desired one, and to what
extent IZTEXML has lost or hidden information represented in the original document.
Again, familiarity with the schema is needed, and the provided XHTML stylesheets may
suggest an approach.

NOTE: I'm trying to make stylesheets easily customizable. However, this is getting
tricky.

e You can import stylesheets which allows the templates to be overridden.
e You can call the overridden stylesheet using apply—-imports

e You can not call apply-imports to call an overridden named template! (al-
though you seemingly can override them?)

e You can refer to xslt modules using URN’s, provided you have loaded the
LaTeXML.catalog:

<xsl:import href="urn:x—LaTeXML:XSLT:LaTeXML—all —xhtml . xs|” />

4.2.2 CSS

CsS stylesheets can be supplied to 1atexmlpost to be included in the generated doc-
uments in addition to, or as a replacement for, the standard stylesheet LaTeXML.css.
See the directory installationdir/ LaTeXML/style/ for samples.

4.2. LATEXMLPOST CUSTOMIZATION 27

To best take advantage of this capability so as to design CSS rules with the correct
specificity, the following points are helpful:

o IA[EXML converts the TgX to its own schema, with structural elements (like
equation) getting their own tag; others are transformed to something more
generic, such as note. In the latter case, a class attribute is often used to dis-
tinguish. For example, a \ footnote generates

<note class='footnote '>...

whereas an \endnote generates

<note class='endnote’>...

e The provided XSLT stylesheets transform IA[EXML’s schema to XHTML, generat-
ing a combined class attribute consisting of any class attributes already present as
well as the ISTEXML tag name. However, there are some variations on the theme.
For example, KXTEX’s \section yeilds a KIEXML element section, with a ti-
tle element underneath. When transformed to XHTML, the former becomes a
<div class="section’ >, while the latter becomes <h2 class="section—title’ > (for
example, the h-level may vary with the document structure),

Mode begin and end For most elements, once the main html element has been
opened and the primary attributes have been added but before any content has been
added, a template with mode begin is called; thus it can add either attributes or con-
tent. Just before closing the main html element, a template with mode end is called.

Computing class and style Templates with mode classes and styling.

28

CHAPTER 4. CUSTOMIZATION

Chapter 5

Mathematics

There are several issues that have to be dealt with in treating the mathematics. On the
one hand, the TgX markup gives a pretty good indication of what the author wants the
math to look like, and so we would seem to have a good handle on the conversion to
presentation forms. On the other hand, content formats are desirable as well; there
are a few, but too few, clues about what the intent of the mathematics is. And in
fact, the generation of even Presentation MathML of high quality requires recognizing
the mathematical structure, if not the actual semantics. The mathematics processing
must therefore preserve the presentational information provided by the author, while
inferring, likely with some help, the mathematical content.

From a parsing point of view, the TgX-like processing serves as the lexer, tok-
enizing the input which KIEXML will then parse [perhaps eventually a type-analysis
phase will be added]. Of course, there are a few twists. For one, the tokens, repre-
sented by XMToK, can carry extra attributes such as font and style, but also the name,
meaning and grammatical role, with defaults that can be overridden by the author —
more on those, in a moment. Another twist is that, although ITEX’s math markup
is not nearly as semantic as we might like, there is considerable semantics and struc-
ture in the markup that we can exploit. For example, given a \ frac, we’ve already
established the numerator and denominator which can be parsed individually, but the
fraction as a whole can be directly represented as an application, using XMApp, of a
fraction operator; the resulting structure can be treated as atomic within its containing
expression.This structure preserving character greatly simplifies the parsing task and
helps reduce misinterpretation.

The parser, invoked by the postprocessor, works only with the top-level lists of
lexical tokens, or with those sublists contained in an XMArg. The grammar works
primarily through the name and grammatical role. The name is given by an attribute,
or the content if it is the same. The role (things like ID, FUNCTION, OPERATOR,
OPEN, ...) is also given by an attribute, or, if not present, the name is looked up in a
document-specific dictionary (jobname.dict), or in a default dictionary.

Additional exceptions that need fuller explanation are:

e Constructors may wish to create a dual object (XMDual) whose children are

29

30

5.1

CHAPTER 5. MATHEMATICS

the semantic and presentational forms.

Spacing and similar markup generates XMHint elements, which are currently
ignored during parsing, but probably shouldn’t.

Math Details

KTEXML processes mathematical material by proceeding through several stages:

Basic processing of macros, primitives and constructors resulting in an XML
document; the math is primarily represented by a sequence of tokens (XMTok)
or structured items (XMApp, XMDual) and hints (XMHint, which are ignored).

Document tree rewriting, where rules are applied to modify the document tree.
User supplied rules can be used here to clarify the intent of markup used in the
document.

Math Parsing; a grammar based parser is applied, depth first, to each level of
the math. In particular, at the top level of each math expression, as well as
each subexpression within structured items (these will have been contained in
an XMArg or XMWrap element). This results in an expression tree that will
hopefully be an accurate representation of the expression’s structure, but may be
ambigous in specifics (eg. what the meaning of a superscript is). The parsing is
driven almost entirely by the grammatical role assigned to each item.

Not yet implemented a following stage must be developed to resolve the semantic
ambiguities by analyzing and augmenting the expression tree.

Target conversion: from the internal XM« representation to MATHML or Open-
Math.

The Math element is a top-level container for any math mode material, serving
as the container for various representations of the math including images (through at-
tributes mathimage, width and height), textual (through attributes tex, content-tex
and text), MATHML and the internal representation itself. The mode attribute speci-
fies whether the math should be in display or inline mode.

5.1.1 Internal Math Representation

The XMath element is the container for the internal representation
The following attributes can appear on all XM« elements:

role the grammatical role that this element plays

open, close parenthese or delimiters that were used to wrap the expression repre-

sented by this element.

argopen, argclose, separators delimiters on an function or operator (the first ele-

ment of an XMApp) that were used to delimit the arguments of the function. The
separators is a string of the punctuation characters used to separate arguments.

5.1. MATH DETAILS 31

xml:id a unique identifier to allow reference (XMRef) to this element.

Math Tags The following tags are used for the intermediate math representation:

XMTok represents a math token. It may contain text for presentation. Additional
attributes are:

name the name that represents the meaning of the token; this overrides the
content for identifying the token.

omcd the OpenMath content dictionary that the name belongs to.

font the font to be used for presenting the content.

style ?

size ?

stackscripts whether scripts should be stacked above/below the item, instead

of the usual script position.

XMApp represents the generalized application of some function or operator to argu-
ments. The first child element is the operator, the remainig elements are the
arguments. Additional attributes:

name the name that represents the meaning of the construct as a whole.
stackscripts ?

XMDual combines representations of the content (the first child) and presentation (the
second child), useful when the two structures are not easily related.

XMHint represents spacing or other apparent purely presentation material.

name names the effect that the hint was intended to achieve.

style ?

XMWrap serves to assert the expected type or role of a subexpression that may other-
wise be difficult to interpret — the parser is more forgiving about these.

name ?
style ?

XMArg serves to wrap individual arguments or subexpressions, created by structured
markup, such as \ frac. These subexpressions can be parsed individually.

rule the grammar rule that this subexpression should match.

XMRef refers to another subexpression,. This is used to avoid duplicating arguments
when constructing an XMDual to represent a function application, for example.
The arguments will be placed in the content branch (wrapped in an XMArg)
while XMRef’s will be placed in the presentation branch.

idref the identifier of the referenced math subexpression.

32 CHAPTER 5. MATHEMATICS

5.1.2 Grammatical Roles

As mentioned above, the grammar take advantage of the structure (however minimal)
of the markup. Thus, the grammer is applied in layers, to sequences of tokens or
atomic subexpressions (like a fractions or arrays). It is the role attribute that indicates
the syntactic and/or presentational nature of each item. On the one hand, this drives
the parsing: the grammar rules are keyed on the role (say, ADDOP), rather than content
(say + or -), of the nodes [In some cases, the content is used to distinguish special
synthesized roles]. The role is also used to drive the conversion to presentation markup,
(say, as an infix operator), especially Presentation MATHML. Some values of role are
used only in the grammar, some are only used in presentation; most are used both ways.

The following grammatical roles are recognized by the math parser. These values
can be specified in the role attribute during the initial document construction or by
rewrite rules. Although the precedence of operators is loosely described in the follow-
ing, since the grammar contains various special case productions, no rigidly ordered
precedence is given. Also note that in the current design, an expresssion has only a sin-
gle role, although that role may be involved in grammatical rules with distinct syntax
and semantics (some roles directly reflect this ambiguity).

ATOM a general atomic subexpression (atomic at the level of the expression; it may
have internal structure);

ID a variable-like token, whether scalar or otherwise, but not a function;
NUMBER a number;

ARRAY a structure with internal components and alignments; typically has a particular
syntactic relationship to OPEN and CLOSE tokens.

UNKNOWN an unknown expression. This is the default for token elements. Such tokens
are treated essential as ID, but generate a warning if it seems to be used as a
function.

OPEN,CLOSE opening and closing delimiters, group expressions or enclose arguments
among other structures;

MIDDLE a middle operator used to group items between an OPEN, CLOSE pair;

PUNCT,PERIOD punctuation; a period ‘ends’ formula (note that numbers, including
floating point, are recognized earlier in processing);

VERTBAR a vertical bar (single or doubled) which serves a confusing variety of nota-
tions: absolute values, “at”, divides;

RELOP a relational operator, loosely binding;

ARROW an arrow operator (with little semantic significance), but generally treated
equivalently to RELOP;

METARELOP an operator used for relations between relations, with lower precedence;

5.1. MATH DETAILS 33

MODIFIER an atomic expression following an object that ‘modifies’ it in some way,
such as a restriction (< 0) or modulus expression;

MODIFIEROP an operator (such as mod) between two expressions such that the latter
modifies the former;

ADDOP an addition operator, between RELOP and MULOP operators in precedence;
MULOP a multiplicative operator, high precedence than ADDOOP;

BINOP a generic infix operator, can act as either an ADDOP or MULOP, typically used
for cases wrapped in \mathbin;

SUPOP An operator appearing in a superscript, such as a collection of primes, or per-
haps a T for transpose. This is distinct from an expression in a superscript with
an implied power or index operator;

PREFIX for a prefix operator;
POSTFIX for a postfix operator;

FUNCTION a function which (may) apply to following arguments with higher prece-
dence than addition and multiplication, or to parenthesized arguments (enclosed
between OPEN,CLOSE);

OPFUNCTION a variant of FUNCTION which doesn’t require fenced arguments;

TRIGFUNCTION a variant of OPFUNCT ION with special rules for recognizing which
following tokens are arguments and which are not;

APPLYOP an explicit infix application operator (high precedence);

COMPOSEOP an infix operator that composes two FUNCTION’s (resulting in another
FUNCTION);

OPERATOR a general operator; higher precedence than function application. For
example, for an operator A, and function F, AFx would be interpretted as

(A(F)) (2);

SUMOP,INTOP, LIMITOP,DIFFOP,BIGOP a summation/union, integral, limiting,
differential or general purpose operator. These are treated equivalently by the
grammar, but are distinguished to facilitate (eventually) analyzing the argument
structure (eg bound variables and differentials within an integral). Note are
SUMOP and LIMITOP significantly different in this sense?

POSTSUBSCRIPT,POSTSUPERSCRIPT intermediate form of sub- and superscript,
roughly as TgX processes them. The script is (essentially) treated as an argument
but the base will be determined by parsing.

FLOATINGSUBSCRIPT,FLOATINGSUPERSCRIPT A special case for a sub- and
superscript on an empty base, ie. {} " {x}. It is often used to place a pre-
superscript or for non-math uses (eg. 10${} "~ {th});

34 CHAPTER 5. MATHEMATICS

The following roles are not used in the grammar, but are used to capture the presen-
tation style; they are typically used directly in macros that construct structured objects,
or used in representing the results of parsing an expression.

STACKED corresponds to stacked structures, such as \atop, and the presentation of
binomial coefficients.

SUPERSCRIPTOP,SUBSCRIPTOP after parsing, the operator involved in various
sub/superscript constructs above will be comverted to these;

OVERACCENT,UNDERACCENT these are special cases of the above that indicate the
2nd operand acts as an accent (typically smaller), expressions using these roles
are usually directly constructed for accenting macros;

FENCED this operator is used to represent containers enclosed by OPEN and CLOSE,
possibly with punctuation, particularly when no semantic is known for the con-
struct, such as an arbitrary list.

The content of a token is actually used in a few special cases to distinguish distinct
syntactic constructs, but these roles are not assigned to the role attribute of expressions:

LANGLE,RANGLE recognizes use of < and > in the bra-ket notation used in quantum
mechanics;

LBRACE,RBRACE recognizes use of { and } on either side of stacked or array con-
structions representing various kinds of cases or choices;

SCRIPTOPEN recognizes the use of { in opening specialized set notations.

Chapter 6

Localization

In this chapter, a few issues relating to various national or cultural styles, languages or
text encodings, which we’ll refer to collectively as ‘localization’, are breifly discussed.

6.1 Numbering

Generally when titles and captions are formatted or when equations are numbered and
when they are referred to in a cross reference or table of contents, text consisting of
some combination of the raw title or caption text, a reference number and a type name
(eg. ‘Chapter’) or symbol (eg. §) is composed and used. The exact compositions that is
used at each level can depend on language, culture, the subject matter as well as both
journal and individual style preferences. IZTEX has evolved to accommodate many of
these styles and IATEXML attempts to follow that lead, while preserve its options (the
demands of extensively hyper-linked online material sometimes seems to demand more
options and flexibility than traditional print formatting).

For example, the various macros \chaptername, \partname, \refname,
etc. are respected and used. Likewise, the various counters and formatters such as
\theequation are supported.

IATEX’s mechanism for formatting caption tags (\fnum@figure and \fnum@table)
is extended to cover more cases. If you define \fnum@type, (where fype is
chapter, section, subsection, etc.) it will be used to format the reference
number and/or type name for instances of that rype. The macro \ fnum@tocQtype is
used when formatting numbers for tables of contents.

Alternatively, you can define a macro \format@title@type that will be used
format the whole title including reference number and type as desired; it takes a sin-
gle argument, the title text. The macro \format@toctitle@type is used for the
formatting a (typically) short form use in tables of contents.

35

36 CHAPTER 6. LOCALIZATION

6.2 Input Encodings

ETEXML supports the standard ISIEX mechanism for handling non-ASCII encodings
of the input TgX sources: using the inputenc package. The ISIEXML binding
of inputenc loads the encoding definition (generally with extension def) directly
from the ISTEX distribution (which are generally well-enough behaved to be easily pro-
cessed). These encoding definitions make the upper 128 code points (of 8 bit) active
and define TgX macros to handle them.

Using the commandline option —-inputencoding=utf8 to latexml allows
processing of sources encoded as utf8, without any special packages loaded. [future
work will make IXIEXML compatible with xetex]

6.3 Output Encodings

At some level, as far as TgX is concerned, what you type ends up pointing into a font
that causes some blob of ink to be printed. This mechanism is used to print a unique
mathematical operator, say ‘subset of and not equals’. It is also used to print greek
when you seemed to have been typing ASCII!

So, we must accomodate that mechanism, as well. At the stage when character to-
kens are digested to create boxes in the current font, a font encoding table (a FontMap)
is consulted to map the token’s text (viewed as an index into the table) to Unicode.
The declaration DeclareFontMap is used to associate a FontMap with an encoding
name, or font.

Note that this mapping is only used for text originating from the source document;
The text within Constructor’s XML pattern is used without any such font conversion.

6.4 Babel

The babel package for supporting multiple languages by redefining various internal
bits of text to replace, eg. “Chapter” by “Kapital” and by defining various shorthand
mechanisms to make it easy to type the extra non-latin characters and glyphs used by
those languages. Each supported language or dialect has a module which is loaded to
provide the needed definitions.

To the extent: that IXTEXML’s input and output encoding handling is sufficient; that
its processing of raw TgX is good enough; and that it proceeds through the appropriate
KTEX internals, IEXML should be able to support babel and arbitrary languages by
reading in the raw TEX implementation of the language module from the TgX distribu-
tion itself.

At least, that is the strategy that we use.

Chapter 7

Alignments

There are several situations where TX stacks or aligns a number of objects into a one
or two dimensional grids. In most cases, these are built upon low-level primitives,
like \halign, and so share characteristics: using & to separate alignment columns;
either \\ or \cr to separate rows. Yet, there are many different markup patterns
and environments used for quite different purposes from tabular text to math arrays to
composing symbols and so it is worth recognizing the intended semantics in each case,
while still processing them as TgX would.

In this chapter, we will describe some of the special complications presented by
alignments and the strategies used to infer and represent the appropriate semantic struc-
tures, particularly for math.

7.1 TEX Alignments

NOTE This section needs to be written.

Many utilities for setting up and processing alignments are defined in TeX.pool
with support from the module (LaTeXML: :Core: :)Alignment. Typically, one
binds a set of control sequences specially for the alignment environment or structure
encountered, particularly for & and \\. An alignment object is created which records
information about each row and cell that was processed, such as width, alignment,
span, etc. Then the alignment is converted to XML by specifying what tag wraps the
entire alignment, each row and each cell.

The content of aligments is being expanded before the column and row markers
are recognized; this allows more flexibility in defining markup since row and column
markers can be hidden in macros, but it also means that simple means, such as delimited
parameter lists, to parse the structure won’t work.

7.2 Tabular Header Heuristics

To be written

37

38 CHAPTER 7. ALIGNMENTS

7.3 Math Forks

There are several constructs for aligning mathematics in IZTEX, and common packages.
Here we are concerned with the large scale alignments where one or more equations
are displayed in a grid, such as egnarray, in standard IATEX, and a suite of constructs
of the amsmath packages. The arrangements are worth preserving as they often con-
vey important information to the reader by the grouping, or by drawing attention to
similarities or differences in the formula. At the same time, the individual fragments
within the grid cells often have little ‘meaning’ on their own: it is subsequences of
these fragments that represent the logical mathematical objects or formula. Thus, we
would also like to recognize those sequences and synthesize complete formula for use
in content-oriented services. We therefore have to devise an XML structure to represent
this duality, as well as developing strategies for inferring and rearranging the mathe-
matics as it was authored into the desired form.

The needed structure shares some characteristics with XMDual, which needs to
be described, but needs to resided at the document level, containing several, possibly
numbered, equations each of which provide two views. Additional objects, such as
textual insertions (such as amsmath’s \ intertext), must also be accomodated.

The following XML is used to represent these structures:

<Itx:equationgroup>
<Itx:equation>
<ltx:MathFork>
<Itx:Math>logical math here</ Itx:Math>
<Itx:MathBranch>
<ltx:td><ltx:Math>cell math</ Itx:Math></I[tx:td>...
or
<ltx:tr><ltx:td><ltx:Math>...
</Itx:MathBranch>
</Itx:MathFork>
</Itx:equation>
<ltx:text>inter-text</Itx:text>
... more text or equations
</Itx:equationgroup>

Typically, the contents of the MathBranch will be a sequence of td, each containing
an Math, or of tr, each containing sequence of such td. This structure can thus rep-
resent both egqnarray where a logical equation consists of one or more complete
rows, as well as AMS’ aligned where equations consist of pairs of columns. The
XSLT transformation that converts to end formats recognizes which case and lays out
appropriately.

In most cases, the material that will yield a MathFork is given as a set of partial
math expressions representing rows and/or columnns; these must be concatenated (and
parsed) to form the composite logical expression.

Any ID’s within the expressions (and references to them) must be modified to avoid
duplicate ids. Moreover, a useful application associates the displayed tokens from the
aligned presentation of the MathBranch with the presumably semantic tokens in the
logcal content of the main branch of the MathFork. Thus, we desire that the IDs in the

7.4. EQNARRAY 39

two branches to have a known relationship; in particular, those in the branch should
have . fork1l appended.

7.4 eqnarray

The egnarray environment seems intended to represent one or more equations, but
each equation can be continued with additional right-hand-sides (by omitting the 1st
column), or the RHS itself can be continued on multiple lines by omitting the 1st two
columns on a row. With our goal of constructing well-structured mathematics, this
gives us a fun little puzzle to sort out. However, being essentially the only structure for
aligning mathematical stuff in standard IXIEX, eqnarray tended to be stretched into
various other use cases; aligning numbered equations with bits of text on the side, for
example. We therefore have some work to do to guess what the intent is.

The strategy used for eqnarray is process the material as an alignment in math
mode and convert initially to the following XML structure:

<ltx:equationgroup>
<Itx:equation>
<Itx:_Capture_>
<lItx:Math><ltx:XMath>column math here</Itx:XMath></ltx:Math>
</Itx:_Capture_>

</Itx:equation>
</lItx:equationgroup>

The results are then studied to recognize the patterns of empty columns so that the rows
can be regrouped into logical equations. MathFork structures are used to contain those
logical equations while preserving the layout in the MathBranch.

NOTE We need to deal better with the cases that have more rows numbered that
we would like.

7.5 AMS Alignments

The AMS math packages define a number of useful math alignment structures. These
have been well thought out and designed with particular logical structures in mind, as
well as the layout. Thus these environments are less often abused than is egnarray.
In this section, we list the environments, their expected use case and describe the strat-
egy used for converting them.

To be done Describe alternates for equation and things inside equations; De-
scribe single vs multiple logical equations. (and started variants)

This list outlines the intended use of the AMS alignment environments The follow-
ing constructs are intended as top-level environments, used like equation.

Several of the constructs are used in place of a top-level equat ion and represent
one or more logical equations. The following describes the intended usage, as a guide
to understanding the implementation code (or its limitations!)

40 CHAPTER 7. ALIGNMENTS

e align,flalign,alignat,xalignat: Each row may be numbered; has
even number of columns; Each pair of columns, aligned right then left, repre-
sents a logical equation; Note that the documentation suggests that annotative
text can be added by putting \text { } in a column followed by an empty col-
umn.

e gather: Each row is a single centered column representing an equation.

e multline: This environment represents a single equation broken to multiple
lines; the lines are aligned left, center (repeated) and finally, right. alignment not
yet implemented

The following environments are used within an equation (or similar) environment and
thus do not generate MathFork structures. Moreover, except for aligned, their se-
mantic intent is less clear. The preservation of the alignment have not yet been imple-
mented; they; presumably would yeiled an XMDual.

e split
e gathered
e aligned,alignedat

Note that the case of a single equation containing a single aligned is transformed
into and treated equivalently to a top-level align.

Chapter 8

Metadata

8.1 RDFa

KTExXML has support for representing and generating RDFa metadata in ISIEXML doc-
uments. The core attributes property, rel, rev, about resource, typeof and content
are included. Provision is also made for about and resource to be specified using
TEX-style labels, or plain XML id’s.

The default set of vocabularies is specified in HTML Role Vocabulary', and the
associated set of prefixes are predefined.

It is intended that the support will be extended to automatically generate RDFa data
from the implied semantics of IATEX markup; the idea would be not to inadvertently
override any explicitly provided metadata supplied by one of the following packages.

The hyperref package The hyperref and hyperxmp packages provide a means to
specify metadata which will be embedded in the generated pdf file; IZTEXML converts
that data to RDFa in its generated XML.

The IxRDFa package There is also a ISTEXML-specific package, 1xXRDFa, which
provides several commands for annotating the generated XML. The most powerful of
which is \ 1xRDFa which allows you to specify any set or subset of RDFa attributes on
the current XML element and thus take advantage of the arbitrary shorthands, chaining
and partial triples that RDFa allows. Correspondingly, you are must beware of clashes
or unintended changes to the set of triples generated by explicit and hidden RDFa data.

http://www.w3.0rg/1999/xhtml/vocab/#XHTMLRoleVocabulary

41

42

CHAPTER 8. METADATA

Chapter 9

ToDo

Lots.

.

Many useful ETEX packages have not been implemented, and those that are
aren’t necessarily complete.

Contributed bindings are, of course, welcome!

Low-level TgX capabilities, such as text modes (eg. vertical, horizonatal), box
details like width and depth, as well as fonts, aren’t mimicked faithfully, although
it isn’t clear how much can be done at the ‘semantic’ level.

a richer math grammar, or more flexible parsing engine, better inferencing of
math structure, better inferencing of math meaning...and thus better Content
MathML and OpenMath support!

Could be faster.
Easier customization of the document schema, XSLT stylesheets.

..um, ...documentation!

43

44

CHAPTER 9. TODO

Acknowledgements

Thanks to the DLMF project and it’s Editors — Frank Olver, Dan Lozier, Ron Boisvert,
and Charles Clark — for providing the motivation and opportunity to pursue this.
Thanks to the arXMLiv project, in particular Michael Kohlhase and Heinrich
Stamerjohanns, for providing a rich testbed and testing framework to exercise the sys-
tem. Additionally, thanks to Ioan Sucan, Catalin David and Silviu Oprea for testing
help and for implementing additional packages.
Particular thanks go to Deyan Ginev as an enthusiastic supporter and developer.

45

46

CHAPTER 9. TODO

Appendix A

Command Documentation

A.l latexml

Transforms a TeX/LaTeX file into XML.

Synopsis

latexml [options] fexfile

Options:

——destination=file sets destination file (default stdout).

——output=file [obsolete synonym for —--destination]

——preload=module requests loading of an optional module;
can be repeated

——preamble=file sets a preamble file which will

effectively be prepended to the main file.
——postamble=file sets a postamble file which will
effectively be appended to the main file.

——includestyles allows latexml to load raw x.sty file;
by default it avoids this.

—-path=dir adds to the paths searched for files,
modules, etc;

——documentid=id assign an id to the document root.

-—quiet suppress messages (can repeat)

—--verbose more informative output (can repeat)

——-strict makes latexml less forgiving of errors

——bibtex processes as a BibTeX bibliography.

——xml requests xml output (default).

——tex requests TeX output after expansion.

——box requests box output after expansion
and digestion.

——noparse suppresses parsing math

——nocomments omit comments from the output

—-—inputencoding=enc specify the input encoding.

47

48

APPENDIX A. COMMANDS
——VERSION show version number.
—-—debug=package enables debugging output for the named
package
—--help shows this help message.

If texfile is ’-’, latexml reads the TeX source from standard input. If fexfile has an

explicit extention of . bib, it is processed as a BibTeX bibliography.

Options & Arguments

——destination=file

Specifies the destination file; by default the XML is written to stdout.

—-preload=module

Requests the loading of an optional module or package. This may be useful
if the TeX code does not specificly require the module (eg. through input or
usepackage). For example, use ——preload=LaTeX.pool to force LaTeX
mode.

——preamble=file, ——postamble=file

Specifies a file whose contents will effectively be prepended or appended to the
main document file’s content. This can be useful when processing TeX frag-
ments, in which case the preamble would contain documentclass and begindoc-
ument control sequences. This option is not used when processing BibTeX files.

——includestyles

This optional allows processing of style files (files with extensions sty, cls,
clo, cnf). By default, these files are ignored unless a latexml implementation
of them is found (with an extension of 1t xml).

These style files generally fall into two classes: Those that merely affect docu-
ment style are ignorable in the XML. Others define new markup and document
structure, often using deeper LaTeX macros to achieve their ends. Although the
omission will lead to other errors (missing macro definitions), it is unlikely that
processing the TeX code in the style file will lead to a correct document.

—-path=dir

Add dir to the search paths used when searching for files, modules, style files,
etc; somewhat like TEXINPUTS. This option can be repeated.

——document id=id

Assigns an ID to the root element of the XML document. This ID is generally
inherited as the prefix of ID’s on all other elements within the document. This
is useful when constructing a site of multiple documents so that all nodes have
unique IDs.

A.l. LATEXML 49

—-—quiet
Reduces the verbosity of output during processing, used twice is pretty silent.

—--verbose

Increases the verbosity of output during processing, used twice is pretty chatty.
Can be useful for getting more details when errors occur.

—--strict

Specifies a strict processing mode. By default, undefined control sequences and
invalid document constructs (that violate the DTD) give warning messages, but
attempt to continue processing. Using --strict makes them generate fatal errors.

—-bibtex

Forces latexml to treat the file as a BibTeX bibliography. Note that the timing
is slightly different than the usual case with BibTeX and LaTeX. In the latter
case, BibTeX simply selects and formats a subset of the bibliographic entries;
the actual TeX expansion is carried out when the result is included in a LaTeX
document. In contrast, latexml processes and expands the entire bibliography;
the selection of entries is done during postprocessing. This also means that any
packages that define macros used in the bibliography must be specified using the
——preload option.

——xml

Requests XML output; this is the default.

—-—-tex

Requests TeX output for debugging purposes; processing is only carried out
through expansion and digestion. This may not be quite valid TeX, since Uni-
code may be introduced.

—-box

Requests Box output for debugging purposes; processing is carried out through
expansion and digestions, and the result is printed.

——nocomments

Normally latexml preserves comments from the source file, and adds a comment
every 25 lines as an aid in tracking the source. The option --nocomments discards
such comments.

—-inputencoding=encoding

Specify the input encoding, eg. ——inputencoding=iso-8859-1. The en-
coding must be one known to Perl’s Encode package. Note that this only enables
the translation of the input bytes to UTF-8 used internally by LaTeXML, but
does not affect catcodes. It is usually better to use LaTeX’s inputenc package.
Note that this does not affect the output encoding, which is always UTF-8.

50

——VERSION

APPENDIX A. COMMANDS

Shows the version number of the LaTeXML package..

——debug=package

Enables debugging output for the named package. The package is given without

the leading LaTeXML.::.

—-help

Shows this help message.

See also

latexmlpost, latexmlmath, LaTeXML

A.2 latexmlpost

Postprocesses an xml file generated by latexml to perform common tasks, such as
convert math to images and processing graphics inclusions for the web.

Synopsis
latexmlpost [options] xmlfile

Options:
—-—-verbose
——VERSION
—-help

shows progress during processing.
show version number.
shows help message.

—--sourcedirectory=sourcedir sets directory of the original

source TeX file.

--validate, —--novalidate Enables (the default) or disables

validation of the source xml.

——format=html |html5|html4|xhtml|xml requests the output format.

——destination=file
—-—omitdoctype
—-—noomitdoctype
—-—numbersections

——nonumbersections
—--stylesheet=xslfile

—-—-css=cssfile

—-—-nodefaultresources
——javscript=jsfile

(html defaults to htmlb)

sets output file (and directory).
omits the Doctype declaration,
disables the omission (the default)
enables (the default) the inclusion of
section numbers in titles, crossrefs.
disables the above

requests the XSL transform using the
given xslfile as stylesheet.

adds css stylesheet to (x)html (5)

(can be repeated)

disables processing built-in resources
adds a link to a javascript file into
html4/html5/xhtml (can be repeated)

—-—xsltparameter=name:value passes parameters to the XSLT.

A.2. LATEXMLPOST

--split

—--nosplit
--splitat
—-splitpath=xpath

requests splitting each document
disables the above (default)

sets level to split the document
sets xpath expression to use for
splitting (default splits at
sections, if splitting is enabled)

—-splitnaming=(id|idrelative|label|labelrelative) specifies

——scan

——-noscan
——crossref
——-nocrossref

how to name split files (idrelative).

scans documents to extract ids,
labels, etc.

section titles, etc. (default)
disables the above

fills in crossreferences (default)
disables the above

——urlstyle=(server|negotiated|file) format to use for urls

(default server).

—--navigationtoc=(context|none) generates a table of contents

——index

—-—-noindex
——-splitindex
—-nosplitindex
——permutedindex
—-nopermutedindex
—-bibliography=file
—--splitbibliography

—--nosplitbibliography
——prescan

——-dbfile=dbfile
--sitedirectory=dir
—--mathimages

—-—-nomathimages
——mathsvg
——nomathsvg

in navigation bar

requests creating an index (default)
disables the above

Splits index into pages per initial.
disables the above (default)
permutes index phrases in the index
disables the above (default)

sets a bibliography file

51

splits the bibliography into pages per

initial.

disables the above (default)
carries out only the split (if
enabled) and scan, storing
cross-referencing data in dbfile
(default is complete processing)
sets file to store crossreferences
sets the base directory of the site
converts math to images

(default for htmld4 format)
disables the above

converts math to svg images
disables the above

—-—-mathimagemagnification=mag sets magnification factor

—-—presentationmathml

——pmml
—-—-nopresentationmathml
——linelength=n

——contentmathml
——nocontentmathml
——cmml

——openmath

converts math to Presentation MathML
(default for xhtml & html5 formats)
alias for —--presentationmathml
disables the above

formats presentation mathml to a
linelength max of n characters
converts math to Content MathML
disables the above (default)

alias for —--contentmathml

converts math to OpenMath

52 APPENDIX A. COMMANDS

——noopenmath disables the above (default)

——om alias for —--openmath

——keepXMath preserves the intermediate XMath
representation (default is to remove)

——mathtex adds TeX annotation to parallel markup

——nomathtex disables the above (default)

—--planel use plane-1 unicode for symbols
(default, if needed)

—-noplanel do not use plane-1 unicode

—-—-graphicimages converts graphics to images (default)

—--nographicimages disables the above

——graphicsmap=type.type specifies a graphics file mapping

—--pictureimages converts picture environments to
images (default)

——nopictureimages disables the above

--svg converts picture environments to SVG

——nosvg disables the above (default)

If xmlfile is °-’, latexmlpost reads the XML from standard input.

Options & Arguments
General Options

——verbose

Requests informative output as processing proceeds. Can be repeated to increase
the amount of information.

——VERSION

Shows the version number of the LaTeXML package..

—--help

Shows this help message.

Source Options

——sourcedirectory=source

Specifies the directory where the original latex source is located. Unless latexml-
post is run from that directory, or it can be determined from the xml filename, it
may be necessary to specify this option in order to find graphics and style files.

——validate, ——novalidate

Enables (or disables) the validation of the source XML document (the default).

A.2. LATEXMLPOST 53

Format Options

——format=(html html5/html4|xhtml|xml)

Specifies the output format for post processing. By default, it will be guessed
from the file extension of the destination (if given), with html implying htm15,
xhtml implying xhtml and the default being xm1, which you probably don’t
want.

The html5 format converts the material to html5 form with mathematics as
MathML; htm15 supports SVG. html14 format converts the material to the ear-
lier html form, version 4, and the mathematics to png images. xhtml format
converts to xhtml and uses presentation MathML (after attempting to parse the
mathematics) for representing the math. html5 similarly converts math to pre-
sentation MathML. In these cases, any graphics will be converted to web-friendly
formats and/or copied to the destination directory. If you simply specify html,
it will treat that as htm15.

For the default, xm1, the output is left in LaTeXML’s internal xml, but the math
is parsed and converted to presentation MathML. For html, html5 and xhtml, a
default stylesheet is provided, but see the ——stylesheet option.

—-destination=destination
Specifies the destination file and directory. The directory is needed for mathim-
ages, mathsvg and graphics processing.

—--omitdoctype, ——noomitdoctype
Onmits (or includes) the document type declaration. The default is to include it if
the document model was based on a DTD.

——-numbersections, ——nonumbersections
Includes (default), or disables the inclusion of section, equation, etc, numbers in
the formatted document and crossreference links.

—-stylesheet=xslfile

Requests the XSL transformation of the document using the given xslfile as
stylesheet. If the stylesheet is omitted, a ‘standard’ one appropriate for the format
(html4, html5 or xhtml) will be used.

——css=cssfile

Adds cssfile as a css stylesheet to be used in the transformed html/html5/xhtml.
Multiple stylesheets can be used; they are included in the html in the order given,
following the default 1t x-LaTeXML.css (unless ——nodefaultcss). The
stylesheet is copied to the destination directory, unless it is an absolute url.

Some stylesheets included in the distribution are --css=navbar-left Puts a nav-
igation bar on the left. (default omits navbar) --css=navbar-right Puts a navi-
gation bar on the left. --css=theme-blue A blue coloring theme for headings.
--css=amsart A style suitable for journal articles.

54 APPENDIX A. COMMANDS

——javascript=jsfile
Includes a link to the javascript file jsfile, to be used in the transformed htm-
1/html5/xhtml. Multiple javascript files can be included; they are linked in the
html in the order given. The javascript file is copied to the destination directory,
unless it is an absolute url.
——icons=iconfile
Copies iconfile to the destination directory and sets up the linkage in the trans-
formed html/html5/xhtml to use that as the “favicon”.
—-nodefaultresources
Disables the copying and inclusion of resources added by the binding files; This
includes CSS, javascript or other files. This does not affect resources explicitly
requested by the ——css or ——javascript options.
——timestamp=timestamp

Provides a timestamp (typically a time and date) to be embedded in the com-
ments by the stock XSLT stylesheets. If you don’t supply a timestamp, the cur-
rent time and date will be used. (You can use ——timestamp=0 to omit the
timestamp).

——-xsltparameter=name:value

Passes parameters to the XSLT stylesheet. See the manual or the stylesheet itself
for available parameters.

Site & Crossreferencing Options
--split, ——nosplit

Enables or disables (default) the splitting of documents into multiple ‘pages’.
If enabled, the the document will be split into sections, bibliography, index and
appendices (if any) by default, unless ——splitpath is specified.

—-splitat=unit

Specifies what level of the document to split at. Should be one of chapter,
section (the default), subsection or subsubsection. For more con-
trol, see ——splitpath.

——-splitpath=xpath

Specifies an XPath expression to select nodes that will generate separate
pages. The default splitpath is //ltx:section | //Itx:bibliography | //Itx:appendix |
/Ntx:index

Specifying

—--splitpath="//ltx:section | //ltx:subsection
| //ltx:bibliography | //ltx:appendix | //ltx:index"

A.2. LATEXMLPOST 55

would split the document at subsections as well as sections.

--splitnaming=(id|idrelative|label|labelrelative)

Specifies how to name the files for subdocuments created by splitting. The values
id and label simply use the id or label of the subdocument’s root node for it’s
filename. idrelative and labelrelative use the portion of the id or
label that follows the parent document’s id or label. Furthermore, to impose
structure and uniqueness, if a split document has children that are also split, that
document (and it’s children) will be in a separate subdirectory with the name
index.

—=—scan, ——noscan

Enables (default) or disables the scanning of documents for ids, labels, refer-
ences, indexmarks, etc, for use in filling in refs, cites, index and so on. It may
be useful to disable when generating documents not based on the LaTeXML
doctype.

——crossref, ——nocrossref

Enables (default) or disables the filling in of references, hrefs, etc based on a
previous scan (either from ——scan, or ——dbfile) It may be useful to disable
when generating documents not based on the LaTeXML doctype.

——urlstyle=(server|negotiated|file)

This option determines the way that URLs within the documents are formatted,
depending on the way they are intended to be served. The default, server,
eliminates unneccessary trailing index.html. With negotiated, the trail-
ing file extension (typically html or xhtml) are eliminated. The scheme file
preserves complete (but relative) urls so that the site can be browsed as files
without any server.

——-navigationtoc=(context \none)

Generates a table of contents in the navigation bar; default is none. The ‘con-
text’ style of TOC, is somewhat verbose and reveals more detail near the current
page; it is most suitable for navigation bars placed on the left or right. Other
styles of TOC should be developed and added here, such as a short form.

——index, ——noindex

Enables (default) or disables the generation of an index from indexmarks em-
bedded within the document. Enabling this has no effect unless there is an index
element in the document (generated by \printindex).

—-splitindex, ——nosplitindex

Enables or disables (default) the splitting of generated indexes into separate
pages per initial letter.

56 APPENDIX A. COMMANDS

—--bibliography=pathname

Specifies a bibliography generated from a BibTeX file to be used to fill in a bibli-
ography element. Hand-written bibliographies placed ina t hebibliography
environment do not need this. The option has no effect unless there is an bibli-
ography element in the document (generated by \bibliography).

Note that this option provides the bibliography to be used to fill in the bibliogra-
phy element (generated by \bibliography); latexmlpost does not (currently)
directly process and format such a bibliography.

——splitbibliography, ——nosplitbibliography
Enables or disables (default) the splitting of generated bibliographies into sepa-
rate pages per initial letter.

——prescan

By default 1atexmlpost processes a single document into one (or more; see
——split) destination files in a single pass. When generating a complicated site
consisting of several documents it may be advantageous to first scan through the
documents to extract and store (in dbfile) cross-referencing data (such as ids,
titles, urls, and so on). A later pass then has complete information allowing all
documents to reference each other, and also constructs an index and bibliography
that reflects the entire document set. The same effect (though less efficient) can
be achieved by running latexmlpost twice, provided a dbfile is specified.

——dbfile=file
Specifies a filename to use for the crossreferencing data when using two-pass
processing. This file may reside in the intermediate destination directory.
—--sitedirectory=dir

Specifies the base directory of the overall web site. Pathnames in the database
are stored in a form relative to this directory to make it more portable.

Math Options

These options specify how math should be converted into other formats. Multiple
formats can be requested; how they will be combined depends on the format and other
options.
——mathimages, ——nomathimages
Requests or disables the conversion of math to images (png by default). Conver-
sion is the default for html4 format.
—--mathsvg, ~—nomathsvg

Requests or disables the conversion of math to svg images.

A.2. LATEXMLPOST 57

——-mathimagemagnification=factor
Specifies the magnification used for math images (both png and svg), if they are
made. Default is 1.75.

——-presentationmathml, -—nopresentationmathml
Requests or disables conversion of math to Presentation MathML. Conversion is
the default for xhtml and html5 formats.

—-linelength=number
(Experimental) Line-breaks the generated Presentation MathML so that it is no
longer than number ‘characters’.

—--planel

Converts the content of Presentation MathML token elements to the appropriate
Unicode Plane-1 codepoints according to the selected font, when applicable (the
default).

—-hackplanel

Converts the content of Presentation MathML token elements to the appropri-
ate Unicode Plane-1 codepoints according to the selected font, but only for the
mathvariants double-struck, fraktur and script. This gives support for current (as
of August 2009) versions of Firefox and MathPlayer, provided a sufficient set of
fonts is available (eg. STIX).

——contentmathml, -—nocontentmathml
Requests or disables conversion of math to Content MathML. Conversion is dis-
abled by default. Note that this conversion is only partially implemented.
——openmath
Requests or disables conversion of math to OpenMath. Conversion is disabled
by default. Note that this conversion is only partially implemented.
——keepXMath

By default, when any of the MathML or OpenMath conversions are used, the
intermediate math representation will be removed; this option preserves it; it
will be used as secondary parallel markup, when it follows the options for other
math representations.

Graphics Options

——graphicimages, -—nographicimages

Enables (default) or disables the conversion of graphics to web-appropriate for-
mat (png).

58 APPENDIX A. COMMANDS

——graphicsmap=sourcetype.desttype

Specifies a mapping of graphics file types. Typically, graphics elements specify
a graphics file that will be converted to a more appropriate file target format;
for example, postscript files used for graphics with LaTeX will be converted to
png format for use on the web. As with LaTeX, when a graphics file is specified
without a file type, the system will search for the most appropriate target type
file.

When this option is used, it overrides and replaces the defaults and provides
a mapping of sourcetype to desttype. The option can be repeated to provide
several mappings, with the earlier formats preferred. If the desttype is omitted, it
specifies copying files of type sourcetype, unchanged.

The default settings is equivalent to having supplied the options:

——graphicsmap=svg
——graphicsmap=png
——graphicsmap=gif
——graphicsmap=Jjpg
——graphicsmap=jpeg
—-—graphicsmap=eps.png
—-—graphicsmap=ps.png
—-—graphicsmap=ai.png
——graphicsmap=pdf.png

The first formats are preferred and used unchanged, while the latter ones are
converted to png.

——pictureimages, ——nopictureimages

Enables (default) or disables the conversion of picture environments and pstricks
material into images.

—-svg, ——nosvg

Enables or disables (default) the conversion of picture environments and pstricks
material to SVG.

See also

latexml, latexmlmath, LaTeXML

A3 latexmlmath

Transforms a TeX/LaTeX math expression into various formats.

A.3. LATEXMLMATH 59

Synopsis
latexmlmath [options] fexmath
Options:
—-mathimage=file converts to image in file
—--mathsvg=file converts to svg image in file
—-magnification=mag specifies magnification factor
—-presentationmathml=file converts to Presentation MathML
——pmml=file alias for —--presentationmathml
——linelength=n do linewrapping of pMML
——contentmathml=file convert to Content MathML
—-—cmml=file alias for —--contentmathml
——openmath=file convert to OpenMath
—-om=file alias for --openmath
--XMath=file output LaTeXML’s internal format
——noparse disables parsing of math
(not useful for cMML or openmath)
—-—-preload=file loads a style file.
——includestyles allows processing raw *.sty files
(normally it avoids this)
—-—path=dir adds a search path for style files.
—-—quiet reduces verbosity (can repeat)
—-—verbose increases verbosity (can repeat)
—-strict be more strict about errors.
——documentid=id assign an id to the document root.
——debug=package enables debugging output for the
named package
——-VERSION show version number and exit.
—-—help shows this help message.

- ends options

If texmath is °-’, latexmlmath reads the TeX from standard input. If any of the
output files are ’-’, the result is printed on standard output.

Input notes

Note that, unless you are reading texmath from standard input, the texmath string will
be processed by whatever shell you are using before 1atexmlmath even sees it. This
means that many so-called meta characters, such as backslash and star, may confuse
the shell or be changed. Consequently, you will need to quote and/or slashify the input
appropriately. Most particularly, \ will need to be doubled to \\ for latexmlmath
to see it as a control sequence.

Using —- to explicitly end the option list is useful for cases when the math starts
with a minus (and would otherwise be interpreted as an option, probably an unrecog-
nized one). Alternatively, wrapping the fexmath with {} will hide the minus.

Simple examples:

latexmlmath \\frac{-b\\pm\\sqrt{b“2-4ac}}{2a}
echo "\\sqgrt{b"2-4ac}" | latexmlmath --pmml=quad.mml -

60 APPENDIX A. COMMANDS

Options & Arguments
Conversion Options

These options specify what formats the math should be converted to. In each case, the
destination file is given. Except for mathimage, the file can be given as ’-’, in which
case the result is printed to standard output.

If no conversion option is specified, the default is to output presentation MathML
to standard output.

——mathimage=file

Requests conversion to png images.

—-mathsvg=file

Requests conversion to svg images.

—-magnification=factor

Specifies the magnification used for math image. Default is 1.75.

—-presentationmathml=file

Requests conversion to Presentation MathML.

—-linelength=number
(Experimental) Line-breaks the generated Presentation MathML so that it is no
longer than number ‘characters’.

--planel
Converts the content of Presentation MathML token elements to the appropriate
Unicode Plane-1 codepoints according to the selected font, when applicable.

—-hackplanel
Converts the content of Presentation MathML token elements to the appropri-
ate Unicode Plane-1 codepoints according to the selected font, but only for the
mathvariants double-struck, fraktur and script. This gives support for current (as
of August 2009) versions of Firefox and MathPlayer, provided a sufficient set of
fonts is available (eg. STIX).

—-contentmathml=file
Requests conversion to Content MathML. Note that this conversion is only par-
tially implemented.

——openmath=file
Requests conversion to OpenMath. Note that this conversion is only partially
implemented.

——XMath=file

Requests convertion to LaTeXML’s internal format.

A.3. LATEXMLMATH 61

Other Options

——preload=module

Requests the loading of an optional module or package. This may be useful
if the TeX code does not specificly require the module (eg. through input or
usepackage). For example, use ——preload=LaTeX.pool to force LaTeX
mode.

—-includestyles

This optional allows processing of style files (files with extensions sty, cls,
clo, cnf). By default, these files are ignored unless a latexml implementation
of them is found (with an extension of 1t xml).

These style files generally fall into two classes: Those that merely affect docu-
ment style are ignorable in the XML. Others define new markup and document
structure, often using deeper LaTeX macros to achieve their ends. Although the
omission will lead to other errors (missing macro definitions), it is unlikely that
processing the TeX code in the style file will lead to a correct document.
——path=dir
Add dir to the search paths used when searching for files, modules, style files,
etc; somewhat like TEXINPUTS. This option can be repeated.
——documentid=id
Assigns an ID to the root element of the XML document. This ID is generally
inherited as the prefix of ID’s on all other elements within the document. This
is useful when constructing a site of multiple documents so that all nodes have
unique IDs.
——quiet
Reduces the verbosity of output during processing, used twice is pretty silent.
——verbose
Increases the verbosity of output during processing, used twice is pretty chatty.
Can be useful for getting more details when errors occur.
——-strict

Specifies a strict processing mode. By default, undefined control sequences and

invalid document constructs (that violate the DTD) give warning messages, but

attempt to continue processing. Using --strict makes them generate fatal errors.
——VERSION

Shows the version number of the LaTeXML package..

——debug=package

Enables debugging output for the named package. The package is given without
the leading LaTeXML.::.

62 APPENDIX A. COMMANDS

——help

Shows this help message.

BUGS

This program runs much slower than would seem justified. This is a result of the
relatively slow initialization including loading TeX and LaTeX macros and the schema.
Normally, this cost would be ammortized over large documents, whereas, in this case,
we’re processing a single math expression.

See also

latexml, latexmlpost, LaTeXML

Appendix B

Implemented Bindings

Bindings for the following classes and packages are supplied with the distribution:

classes: IEEFEtran, JHEP, JHEP2, JHEP3, OmniBus, aOposter, aa, aastex, aastex6, aas-
tex61, acmart, amsart, amsbook, amsproc, article, book, elsart, elsarticle, emu-
lateapj, gen-j-1, gen-m-1, gen-p-1, ieeeconf, iopart, lincs, mn, mn2e, mnras, mod-
erncv, report, revtex, revtex4-1, revtex4, slides, svjour, svjour3, svmult

packages: aOsize, a4, ad4wide, aas_macros, aasms, aaspp, aastex, accents, acronym,
ae, aecompl, afterpage, algc, algcompatible, algmatlab, algorithm, algorithm?2e,
algorithmic, algorithmicx, algpascal, algpseudocode, alltt, amsbsy, amscd, ams-
fonts, amsgen, amsmath, amsopn, amsppt, amsrefs, amssymb, amstex, amstext,
amsthm, amsxtra, apjfonts, appendix, array, attachfile, authblk, avant, babel,
balance, bbm, bbold, beton, bm, bookman, booktabs, braket, breakurl, breqn,
calc, cancel, caption, cases, ccfonts, chancery, charter, circuitikz, cite, citesort,
cleveref, cmbright, color, colordvi, colortbl, comment, concmath, courier, crop,
cropmark, csquotes, dcolumn, deluxetable, doublespace, dsfont, ellipsis, elsart,
empheq, emulateapj, emulateapj5, endnotes, enumerate, enumitem, epigraph,
epsf, epsfig, epstopdf, esint, etex, etoolbox, eucal, eufrak, euler, eulervm, eu-
rosym, euscript, exscale, fancyhdr, fix-cm, fixltx2e, flafter, fleqn, float, float-
fig, floatflt, floatpag, flowchart, flushend, fontenc, fontspec, footmisc, fourier,
framed, fullpage, gensymb, geometry, german, graphics, graphicx, grffile, hel-
vet, here, hhline, html, hyperref, hyperxmp, icml2016, icmI2017, icmlI2018, iflu-
atex, ifpdf, ifthen, ifvtex, ifxetex, import, indentfirst, inputenc, iopams, jheppub,
keyval, lastpage, latexml, latexsym, lineno, lipsum, listings, listingsutf8, llama-
pun, Imodern, longtable, Iscape, luximono, 1xRDFa, makecell, makeidx, mar-
vosym, mathbbol, mathpazo, mathpple, mathptm, mathptmx, mathrsfs, math-
tools, microtype, mleftright, multicol, multido, multirow, nameref, natbib, new-
cent, newfloat, newlfont, newtxmath, newtxtext, ngerman, nicefrac, ntheorem,
numprint, palatino, paralist, parskip, pdfiscape, pdfpages, pdfsync, pgf, pgf-
plots, pifont, placeins, preview, psfig, pslatex, pspicture, pst-grad, pst-node,
pstricks, pxfonts, ragged2e, relsize, revsymb, revtex, revtex4, rotate, rotating,
rsfs, scalefnt, sectsty, setspace, showkeys, siunitx, slashed, soul, srcltx, stfloats,

63

64

APPENDIX B. BINDINGS

stmaryrd, subcaption, subfig, subfigure, subfloat, supertabular, svg, tlenc, table-
footnote, tabularx, tabulary, textcase, textcomp, texvc, theorem, thmtools, three-
parttable, tikz-3dplot, tikz, times, titlesec, titling, tocbibind, todonotes, tracefnt,
transparent, turing, txfonts, typelcm, ulem, units, upgreek, upref, url, utopia,
verbatim, wasysym, wiki, wrapfig, xargs, xcolor, xkeyval, xkvview, xspace, xu-
nicode, yfonts

Appendix C

Top-level Module
Documentation

C.1 LaTeXML

A converter that transforms TeX and LaTeX into XML/HTML/MathML

Synopsis

use LaTeXML;
my S$converter = LaTeXML->get_converter ($Sconfig);
my Sconverter = LaTeXML->new ($Sconfig);
Sconverter->prepare_session (Sopts) ;
Sconverter—>initialize_session; # SHOULD BE INTERNAL
Shashref = S$Sconverter—->convert ($tex);
my (Sresult,$log, $status)

= map {S$hashref->{$_}} gqw(result log status);

Description

LaTeXML is a converter that transforms TeX and LaTeX into XML/HTML/MathML
and other formats.

A LaTeXML object represents a converter instance and can convert files on de-
mand, until dismissed.

Methods

my S$converter = LaTeXML->new($config);

Creates a new converter object for a given LaTeXML::Common::Config object,
$config.

my $converter = LaTeXML->get_converter ($config);

65

66 APPENDIX C. MODULES

Either creates, or looks up a cached converter for the $config configuration ob-
ject.
$converter—>prepare_session ($opts) ;

Top-level preparation routine that prepares both a correct options object and
an initialized LaTeXML object, using the “initialize_options” and “initial-
ize_session” routines, when needed.

Contains optimization checks that skip initializations unless necessary.
Also adds support for partial option specifications during daemon runtime,
falling back on the option defaults given when converter object was created.

my ($result, $status,$log) = $converter->convert ($tex);

Converts a TeX input string $tex into the LaTeXML::Core::Document object
$result.

Supplies detailed information of the conversion log ($log), as well as a brief
conversion status summary ($status).

INTERNAL ROUTINES

$converter->initialize session($opts);

Given an options hash reference $opts, initializes a session by creating a new
LaTeXML object with initialized state and loading a daemonized preamble (if

any).
Sets the “ready” flag to true, making a subsequent “convert” call immediately
possible.

my $latexml = new_latexml ($opts);

Creates a new LaTeXML object and initializes its state.

my S$postdoc = $converter->convert post ($dom) ;

Post-processes a LaTeXML::Core::Document object $dom into a final format,
based on the preferences specified in $$self{opts}.

Typically used only internally by convert.

$converter->bind log;
Binds STDERR to a "log” field in the $converter object

my $log = $converter->flush log;

Flushes out the accumulated conversion log into $log, reseting STDERR to its
usual stream.

C.2 LaTeXML: :Global

Global exports used within LaTeXML, and in Packages.

C.3. LATEXML : : PACKAGE 67

Synopsis
use LaTeXML::Global;

Description

This module exports the various constants and constructors that are useful throughout
LaTeXML, and in Package implementations.

Global state

$STATE;

This is bound to the currently active LaTeXML: :Core::State by an in-
stance of LaTeXML during processing.

C.3 LaTeXML: :Package

Support for package implementations and document customization.

Synopsis

This package defines and exports most of the procedures users will need to customize or
extend LaTeXML. The LaTeXML implementation of some package might look some-
thing like the following, but see the installed LaTeXML/Package directory for real-
istic examples.

package LaTeXML: :Package::pool; # to put new subs & variables in common pool

use LaTeXML: :Package; # to load these definitions
use strict; # good style

use warnings;

#

Load "anotherpackage"

RequirePackage (’ anotherpackage’) ;

#

A simple macro, just like in TeX

DefMacro (' \thesection’, ’\thechapter.\roman{section}’);

#

A constructor defines how a control sequence generates XML:
DefConstructor (\thanks{}’, "<ltx:thanks>#1</ltx:thanks>");
#

And a simple environment

DefEnvironment (’ {abstract}’,’<abstract>#body</abstract>’);
#

A math symbol \Real to stand for the Reals:
DefMath (\Real’, "\x{211D}", role=>'1ID’);

#

Or a semantic floor:

68 APPENDIX C. MODULES

DefMath (" \floor{}’,’\left\1floor#l\right\rfloor’);
#

More esoteric

Use a RelaxNG schema

RelaxNGSchema ("MySchema") ;

Or use a special DocType if you have to:
DocType ("rootelement",
"-//Your Site//Your DocType",’your.dtd’,
prefix=>"http://whatever/");
#
Allow sometag elements to be automatically closed if needed
Tag ('prefix:sometag’, autoClose=>1);
#
Don’t forget this, so perl knows the package loaded.
1;
Description

This module provides a large set of utilities and declarations that are useful for writing
‘bindings’: LaTeXML-specific implementations of a set of control sequences such as
would be defined in a LaTeX style or class file. They are also useful for controlling
and customization of LaTeXML'’s processing. See the LaTeXML: :Package/"See
also" section, below, for additional lower-level modules imported & re-exported.
To a limited extent (and currently only when explicitly enabled), LaTeXML can
process the raw TeX code found in style files. However, to preserve document
structure and semantics, as well as for efficiency, it is usually necessary to sup-
ply a LaTeXML-specific ‘binding’ for style and class files. For example, a binding
mypackage.sty.ltxml would encode LaTeXML-specific implementations of all
the control sequences in mypackage. sty so that \usepackage{mypackage}
would work. Similarly for myclass.cls.ltxml. Additionally, document-specific
bindings can be supplied: before processing a TeX source file, eg mydoc.tex, La-
TeXML will automatically include the definitions and settings in mydoc.latexml.
These . 1txml and . latexml files should be placed LaTeXML’s searchpaths, where
will find them: either in the current directory or in a directory given to the --path option,
or possibly added to the variable SEARCHPATHS).
Since LaTeXML mimics TeX, a familiarity with TeX’s processing model is crit-
ical. LaTeXML models: catcodes and tokens (See LaTeXML: :Core: :Token,
LaTeXML: :Core: : Tokens) which are extracted from the plain source text charac-
ters by the LaTeXML: :Core: :Mouth; LaTeXML: :Package/Macros, which
are expanded withinthe LaTeXML: :Core: :Gullet;and LaTeXML: :Package/Primitives,
which are digested withinthe LaTeXML: :Core: : Stomachtoproduce LaTeXML: :Core: :Box,
LaTeXML: :Core: :List. Akey additional feature isthe LaTeXML: : Package/Constructors:
when digested they generate a LaTeXML: :Core: :Whatsit which, upon absorb-
tionby LaTeXML: :Core: :Document, inserts text or XML fragments in the final
document tree.
Notation: Many of the following forms take code references as arguments