
 ./doc/langRef.xotcl

Package/File Information
No package provided/required

Defined Objects/Classes:
::xotcl::Slot:⋅
Attribute:⋅
Class: __unknown, allinstances, alloc, create, info, instdestroy, instfilter, instfilterguard,
instforward, instinvar, instmixin, instparametercmd, instproc, new, parameter,
parameterclass, recreate, superclass, unknown.

⋅

Object: abstract, append, array, autoname, check, class, cleanup, configure, contains, copy,
destroy, eval, exists, extractConfigureArg, filter, filterguard, filtersearch, forward,
getExitHandler, hasclass, incr, info, instvar, invar, isclass, ismetaclass, ismixin, isobject,
istype, lappend, mixin, move, noinit, parametercmd, proc, procsearch, requireNamespace,
set, setExitHandler, subst, trace, unset, uplevel, upvar, volatile, vwait.

⋅

Filename: ./doc/langRef.xotcl

Description: XOTcl language reference. Describes predefined objects and classes.

Predefined
primitives:

XOTcl contains the following predefined primitives (Tcl commands):
self

computes callstack related information. It can be used in the
following ways:
self - returns the name of the object, which is currently in execution.
If it is called from outside of a proc, it returns the error message
``Can't find self''.

⋅

self class - the self command with a given argument class returns
the name of the class, which holds the currently executing instproc.
Note, that this may be different to the class of the current object. If it
is called from a proc it returns an empty string.

⋅

self proc - the self command with a given argument proc returns the
name of the currently executing proc or instproc.

⋅

self callingclass: Returns class name of the class that has called the
executing method.

⋅

self callingobject: Returns object name of the object that has called
the executing method.

⋅

self callingproc: Returns proc name of the method that has called
the executing method.

⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

 ./doc/langRef.xotcl 1

self calledclass: Returns class name of the class that holds the
target proc (in mixins and filters).

⋅

self calledproc: Returns method name of the target proc (only
applicable in a filter).

⋅

self isnextcall: Return 1 if this method was invoked via next,
otherwise 0

⋅

self next: Return the "next" method on the precedence path as a
string.

⋅

self filterreg: In a filter: returns the name of the object/class on which
the filter is registered. Returns either 'objName filter filterName' or
'className instfilter filterName'.

⋅

self callinglevel: Returns the calling level, from where the actual
proc was called from. Intermediary next calls are ignored in this
computation. The level is returned in a form it can be used as first
argument in uplevel or upvar.

⋅

self activelevel: Returns the level, from where the actual proc was
invoked from. This might be the calling level or a next call, whatever
is higher in the stack. The level is returned in a form it can be used
as first argument in uplevel or upvar.

⋅

my methodName
is a short form for [self] methodName and can only be called in a
context of an instproc or an method specific proc. It allows certain
optimizations and shorter to write.

next
invokes the next shadowed (same-named) method on the precedence path
and returns its result. If next is called without arguments, the arguments of
the current method are passed through the called method. If next is invoked
with the flag --noArgs, the shadowed method is called without arguments. If
other arguments are specified for next, these will be used for the call.

myvar varName
returns the fully qualified variable name of the specified variable.

myproc methodName ?args?
calls the specified XOTcl method without the need of using "[list
[self] methodName ...]".

::xotcl::alias class|obj methodName ?-objscope? ?-per-object? cmdName
can be used to register a predefined C-implemented Tcl command
as method methodName. The option -objscope has the same
meaning as for forwarder (instance variables of the calling object
appear in the local scope of the Tcl command), -per-object has the
same meaning as for the method method (when used on a class,
the method is registered for the class object only, but not for the
instances). This command can be used to bootstrap xotcl (when
e.g. no methods are available).

::xotcl::configure filter ?on|off?
allows to turn on or off filters globally for the current interpreter. By
default, the filter state is turned off. This function returns the old filter
state. This function is needed for the serializer that is intended to
serialize the objects classes independent of filter settings.

::xotcl::configure softrecreate ?on|off?
allows to control what should happen, when an object / a class is
recreated. Per default it is set off, which means that the object/class

XOTcl - Documentation -- ./doc/langRef.xotcl

Package/File Information 2

is destroyed and all relations (e.g. subclass/superclass) to other
objects/classes are destroyed as well. If softrecreate is set, the
object is reseted, but not destroyed, the relations are kept. This is
important, when e.g. reloading a file with class definitions (e.g. when
used in OpenACS with file watching and reloading). With
softrecreate set, it is not necessary to recreate dependent
subclasses etc.

Example: e.g. there is a class hierarchy A softrecreate set, a reload of B
means first a destroy of B, leading to A softrecreate is set, the structure
remains unchanged.

::xotcl::finalize
Delete all XOTcl objects and classes and free all associated
memory.

This command has the only purpose to delete all objects and classes of an
interpreter in a multi-threaded environment at a safe time.

Background: when XOTcl is used in a threaded environment such as for
example in AOLserver, one has to take care that the deletion of objects and
classes happens in a safe environment, where the XOTcl destructors
(destroy methods) are still able to run. Without ::xotcl::finalize the deletion
happens in Tcl_FinalizeThread(), after thread cleanup (where e.g. the
thread local storage is freed). This can lead to memory leaks in AOLserver,
which allocates e.g. some structures on demand, but since this happens
after cleanup, it will leak. A simple ns_log in a destructor might lead to this
problem. The solution is to call ::xotcl::finalize in the "delete trace" in
AOLserver (as it happens in OpenACS).

Note, that ::xotcl::finalize is not intended for application programs.

Class: ::xotcl::Slot
Class: Class
Heritage: Object

Description: A slot is a meta-object that manages property-changes of objects. A property is
either an attribute or a role of an relation (e.g. in system slots). The predefined
system slots are class, superclass, mixin, instmixin, filter, instfilter. These slots
appear as methods of Object or Class.

The slots provide a common query and setting interface. Every multivalued slot
provides e.g. a method add to add a value to the list of values, and a method delete
which removes it. See for example the documentation of the slot mixin.

XOTcl - Documentation -- ./doc/langRef.xotcl

 Class: ::xotcl::Slot 3

Parameters:

-name Name of the slot to access from an object the slot

-domain domain (object or class) of a slot on which it can be used

-multivalued boolean value for specifying single or multiple values (lists)

-defaultmethods list of two elements for specifying which methods are called per
default, when no slot method is explicitly specified

-manager the manager object of the slot (per default [self])

-per-object specify whether a slot should be used per class or per object;
note that there is a restricted usage if applied per class, since
defaults etc, work per initialization

For more details, consult the tutorial.

Class: Attribute
Class: Class
Heritage: ::xotcl::Slot

Description: Attribute slots are used to manage the setting and querying of instance variables.
Parameters:

-default specify a default value

-type specify the type of a slot

-initcmd specify a Tcl command to be executed when the value of the
associated variable is read the first time; allows lazy
initialization

-valuecmd specify a Tcl command to be executed whenever the variable
is read

-valuechangedcmd specify a Tcl command to be executed whenever the variable
is changed

Example of a class definition with three attribute slots:

Class Person -slots {
Attribute name
Attribute salary -default 0
Attribute projects -default {} -multivalued true

 }
 Person p1 -name "John Doe"

XOTcl - Documentation -- ./doc/langRef.xotcl

 Class: Attribute 4

The slot parameters default, initcmd and valuecmd have to be used mutually
exclusively. For more details, consult the tutorial.

Class: Class
Class: Class
Heritage: Object
Procs/Instprocs: __unknown, allinstances, alloc, create, info, instdestroy, instfilter, instfilterguard,
instforward, instinvar, instmixin, instparametercmd, instproc, new, parameter, parameterclass,
recreate, superclass, unknown.

Description: This meta-class holds the pre-defined methods available for all XOTcl classes.

Instprocs

alloc obj ?args?

Arguments: obj: new obj/class name

?args?: arguments passed to the new class after creation

Description: Allocate an uninitialized XOTcl object or class. Alloc is used by the method
create to allocate the object. Note that create also calls as well configure
and init to initialized the object. Only in seldom cases the programmer may
want to suppress the create mechanism and just allocate uninitiaized
objects via alloc.

Return: new class name

⋅

allinstances

Description: Compute all immediate and indirect instances of a class

Return: fully qualified list of instances

⋅

create objName ?args?

Arguments: objName: name of a new class or object

?args?: arguments passed to the constructor

Description: Create user-defined classes or objects. If the class is a meta-class, a class
is created, otherwise an object. The method create is responsible for
allocating and initializing objects. The method can be overloaded e.g. in a
metaclass if other initialization behavior is wanted.

The standard behavior of create is as follows:

Call the method alloc to create an uninitialized object.1.
Call the method searchDefaults to set default values for instance
attributes-

2.

⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

 Class: Class 5

Call the method configure to configure the object with the values
provided at object creation time. The method configure interprets the
arguments with leading dashes as method calls.

3.

Call the method init to allow initialization by the class. The argument
passed to init are the values from the passed argument list
containing the arguments up to the first '-'.

4.

Create firstly calls alloc in order to allocate memory for the new object. Then
default values for parameters are searched on superclasses (an set if
found). Finally the constructor init is called on the object with all arguments
up to the first '-' arg.

The create method is often called implicitly through the unknown mechanism
when a class (meta-class) is called with an unknown method. E.g. the
following two commands are equivalent

 Car herby -color red
 Car create herby -color red
When a users may want to call the constructor init before other '-' methods,
one can specify '-init' explicitly in the left to right order of the '-' method. Init is
called always only once. e.g.:
 Class Car -init -superclass Vehicle

Return: name of the created instance (result of alloc)

info args

Arguments: args: info options

Description: Introspection of classes. All options available for objects (see info object) is
also available for classes. The following options can be specified:

ClassName info classchildren ?pattern?: Returns the list of nested
classes with fully qualified names if pattern was not specified,
otherwise it returns all class children where the class name matches
the pattern.

⋅

ClassName info classparent: Returns the class ClassName is
nesting to.

⋅

ClassName info heritage ?pattern?: Returns a list of all classes in the
precedence order of the class hierarchy. If pattern is specified, only
matching values are returned.

⋅

ClassName info instances ?-closure? ?pattern?: Returns a list of the
instances of the class. If -closure is specified, the resultet contains as
well the instances of subclasses. If pattern is specified and it
contains wildcards, all matching instances are returned. If pattern
does not contain wildcards, either the fully qualified name is
returned, or empty, if no match exists.

⋅

ClassName info instargs method: Returns the arguments of the
specified instproc (instance method).

⋅

ClassName info instbody method: Returns the body of the specified
instproc (instance method).

⋅

ClassName info instcommands ?pattern?: Returns all commands
defined for the class. If pattern is specified it returns all commands

⋅

⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 6

that match the pattern.
ClassName info instdefault method arg var: Returns 1 if the
argument arg of the instproc (instance method) method has a default
value, otherwise 0. If it exists the default value is stored in var.

⋅

ClassName info instfilter: Returns the list of registered filters. With
-guard modifier all instfilterguards are integrated (ClassName info
instfilter -guards).

⋅

objName info instfilterguard name: Returns the guards for instfilter
identified by name.

⋅

objName info instforward ?-definition name? ?pattern?: Returns the
list of instforwarders. One can call this method either without the
optional arguments, or with the pattern or with -definition name.
When the pattern is specified only the matching instforwarders are
returned. When the definition option is used together with a name of
a isntforwarder, the definition of the instforwarder with all flags is
returned in a way that can be used e.g. for registering the
instforwarder on another class.

⋅

ClassName info instinvar: Returns class invariants.⋅
ClassName info instmixin ?pattern?: Returns the list of instmixins of
this class. If pattern is specified and it contains wildcards, all
matching mixin classes are returned. If pattern does not contain
wildcards, either the fully qualified name is returned, or empty, if no
match exists.

⋅

ClassName info instmixinof ?-closure? ?pattern?: Returns the list of
classes, into which this class was mixed in via instmixin. This is the
inverse function of ClassName info instmixin. If -closure is specified,
also the classes are returned, for which the class is indirectly mixed
in via instmixin. If pattern is specified and it contains wildcards, all
matching mixin classes are returned. If pattern does not contain
wildcards, either the fully qualified name is returned, or empty, if no
match exists.

⋅

ClassName info instnonposargs methodName: returns list of
non-positional args of methodName

⋅

objName info instparametercmd ?pattern?: Returns a list of
registered instparametercmds the class (or empty if there are none).
If pattern is specified, only the matching instparametercmds are
returned.

⋅

ClassName info instpost methodName: Returns post assertions of
methodName.

⋅

ClassName info instpre methodName: Returns pre assertions of
methodName.

⋅

ClassName info instprocs ?pattern?: Returns all instprocs defined for
the class. If pattern is specified it returns all instprocs that match the
pattern.

⋅

ClassName info mixinof ?-closure? ?pattern?: Returns the list of
classes, into which this class was mixed in via per object mixin. This
is the inverse function of Object info mixin. If -closure is specified,
also the classes are returned, for which the class is indirectly mixed
in as a per-object mixin. If pattern is specified and it contains
wildcards, all matching mixin classes are returned. If pattern does
not contain wildcards, either the fully qualified name is returned, or

⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 7

empty, if no match exists.
ClassName info parameter: Returns parameter list.⋅
ClassName info subclass ?-closure? ?pattern?: Returns a list of all
subclasses of the class. If -closure is specified, the result contains as
well the subclasses of the subclasses. If pattern is specified and it
contains wildcards, all matching subclasses are returned. If pattern
does not contain wildcards, either the fully qualified name is
returned, or empty, if no match exists.

⋅

ClassName info superclass ?-closure? ?superclassname?: Returns
a list of all super-classes of the class. If -closure is specified, the
result contains as well the superclasses of the superclasses. If
pattern is specified and it contains wildcards, all matching
superclasses are returned. If pattern does not contain wildcards,
either the fully qualified name is returned, or empty, if no match
exists.

⋅

Return: Value of introspected option as a string.

instdestroy obj ?args?

Arguments: obj: obj/class name

?args?: arguments passed to the destructor

Description: Standard destructor. Destroys XOTcl object physically from the memory.
Can be overloaded for customized destruction process.

In XOTcl objects are not directly destroyed, when a destroy is encountered
in a method. Beforehand, the interpreter looks up whether the object is still
referenced on the method callstack or not. If not, the object is directly
destroyed. Otherwise every occurrence of the object on the callstack is
marked as destroyed. During popping of the callstack, for each object
marked as destroyed, the reference count is decremented by one. When no
more references to the object are on the callstack the object is physically
destroyed. This way we can assure that objects are not accessed with [self]
in running methods after they are physically destroyed.

Return: empty string

⋅

instfilter ?args?

Arguments: ?args?: instfilter specification

Description: If $args is one argument, it specifies a list of instfilters to be set. Every filter
must be an XOTcl proc/instproc within the object scope. If $args it has more
argument, the first one specifies the action. Possible values are assign, get,
add or delete, it modifies the current settings as indicated. For more details,
check the tutorial.

Return: if $args return empty current instfilters, otherwise empty

⋅

instfilterguard filterName guard

Arguments: filterName: filter name of a registered filter

⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 8

guard: set of conditions to execute the filter

Description: Add conditions to guard a filter registration point. The filter is only executed,
if the guards are true. Otherwise we ignore the filter. If no guards are given,
we always execute the filter.

Return: empty string

instforward methodName ?options? ?callee? ?args?

Arguments: methodName: name of forwarder method

?options?: -objscope, -methodprefix string, -default names, -earlybinding,
-verbose

?callee?: named of the called command or object

?args?: arguments

Description: Register a method for the instances of a class (similar to an instproc) for
forwarding calls to a callee (target Tcl command, other object). When the
forwarder method is called, the actual arguments of the invocation are
appended to the specified arguments. In callee an arguments certain
substitutions can take place:

%proc: substituted by name of the forwarder method⋅
%self: substitute by name of the object⋅
%1: substitute by first argument of the invocation⋅
{%@POS value}: substitute the specified value in the argument list
on position POS, where POS can be a positive or negative integer or
end. Positive integers specify the position from the begin of the list,
while negative integer specify the position from the end.

⋅

{%argclindex LIST}: take the nth argument of the specified list as
substitution value, where n is the number of arguments from the
invocation.

⋅

%%: a single percent.⋅
%Tcl-command: command to be executed; substituted by result.⋅

Additionally each argument can be prefixed by the positional prefix %@POS
(note the delimiting space at the end) that can be used to specify an explicit
position. POS can be a positive or negative integer or the word end. The
positional arguments are evaluated from left to right and should be used in
ascending order. valid Options are:

-objscope causes the target to be evaluated in the scope of the
object,

⋅

-methodprefix string inserts the specified prefix in front of the second
argument of the invocation,

⋅

-default is used for default method names (only in connection with
%1)

⋅

-earlybinding: look up the function pointer of the called Tcl command
at definition time of the forwarder instead of invocation time. This
option should only be used for calling C-implemented Tcl commands,
no procs etc.);

⋅

-verbose⋅

⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 9

: print the substituted command to stderr before executing

See tutorial for detailed examples. Return: empty

instinvar invariantList

Arguments: invariantList: Body of invariants for the class

Description: Specify invariants for the class. These are inherited by sub-classes. The invariants
must hold for all instances. All assertions are a list of ordinary Tcl conditions.

Return: empty string

•

instmixin ?args?

Arguments: ?args?: instmixin specification

Description: If $args is one argument, it specifies a list of instmixins to be set. Every instmixin
must be a defined class. If $args has more argument, the first one specifies the
action. Possible values are assign, get, add or delete, it modifies the current
settings as indicated. For more details, check the tutorial.

Return: if $args empty return current instmixins, otherwise empty

•

instparametercmd name

Arguments: name: variable to be provided with getter/setter method

Description: Add a getter/setter command for an instance variable with the specified name. This
method is used for example by the parameter method. Example:
 Class C
 C instparametercmd x
 C c1 -x 100
 puts [c1 x]

Return: empty string

•

instproc name ?non-pos-args?" args body ?preAssertion? ?postAssertion?

Arguments: name: instance method name

?non-pos-args?": optional non-positional arguments

args: instance method arguments

body: instance method body

?preAssertion?: optional assertions that must hold before the proc executes

?postAssertion?: optional assertions that must hold after the proc executes

Description: Specify an instance method in the same style as Tcl specifies procs.
Optionally assertions may be given by two additional arguments. Therefore, to
specify only post-assertions an empty pre-assertion list must be given. All
assertions are a list of ordinary Tcl conditions.

•

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 10

When instproc is called with an empty argument list and an empty body, the
specified instproc is deleted.

Return: empty string

new ?-childof obj? ?args?

Arguments: ?-childof obj? ?args?: args passed to create

Description: Convenience method to create an autonamed object. E.g.:
 HTTP new
creates ::xotcl::__#0, a subsequent call creates ::xotcl::__#1, ...
If -childof obj is specified, the new object is created as a child of the specified
object.

Return: new object name

•

parameter parameterList

Arguments: parameterList: list of parameter definitions

Description: Specify parameters automatically created for each instance. Parameters denote
instance variables which are available on each class instance and that have a
getter/setter method with their own name. Parameters are specified in a parameter
list of the form {p1 p2 ... pn}. p1 ... pn may either be parameter names or definitions
of the form {parameterName defaultValue}. If a default value is given, that
parameter is created during creation process of the instance object, otherwise only
the getter/setter method is created (and the parameter does not exist). The
getter/setter method has the same name as the parameter. It gets and returns the
parameter, if no argument is specified. With one argument, the parameter is set to
the argument value.
Example:
 Class Car -parameter {{doors 4} color}
 Car herby -doors 2 -color green

Return: empty string

•

parameterclass class

Arguments: class: parameter class name

Description: Set the parameter class. The parameter class specifies how parameters are stored
and maintained internally. Per default, a method "default" is called, to set the
parameter with a default value. I.e.,
 Class Car -parameter {
 {doors 4}
 }
is a short form for
 Class Car -parameter {
 {doors -default 4}
 }
For specialized parameter classes other methods can be called, e.g.
 {doors -default 3 -updateWidget car}

Return: empty string

•

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 11

recreate obj ?args?

Arguments: obj: obj to be recreated

?args?: arbitrary arguments

Description: Methods called upon recreation of an object. Recreate is called, when an
object/class is created, but a same-named object/class exists already. "recreate" is
not called, when an object is trying to be recreated as a class or vice versa. In these
cases, recreating is realized via destroy+create. The Methods "recreate" performs
standard object initialization, per default. May be overloaded/-written. It calls
another method cleanup which handles actual cleanup of the object during next.
That means, if you overload recreate, in the pre-part the object still contains its old
state, after next it is cleaned up.

Return: obj name

•

superclass classList

Arguments: classList: ?list of classes?

Description: Specify super-classes for a class. "superclass" changes the list of superclasses
dynamically to classList. The method returns the current value of superclass, when
it is called without arguments.

Return: if classList is not specified return superclass(es), otherwise empty

•

unknown ?args?

Arguments: ?args?: arbitrary arguments

Description: Standard unknown mechanism. This mechanism is always triggered when XOTcl
does not know a method called on an object. Supposed that there is no method with
the called name, XOTcl looks up the method "unknown" (which is found on the
Class Object) and executes it. The standard unknown-mechanism of XOTcl calls
create with all arguments stepping one step to the right; in the general case:
 ClassName create ClassName ?args?
Unknown can be overloaded in user-defined subclasses of class.

Return: Standard unknown mechanism returns result of create

•

Procs

__unknown name

Arguments: name: name of class to be created

Description: This method is called, whenever XOTcl references a class, which is not
defined yet. In the following example: Class C -superclass D D is not
defined. Therefore Class __unknown D is called. This callback can be used
to perform auto-loading of classes. After this call, XOTcl tries again to
resolve D. If it succeeds, XOTcl will continue; otherwise, an error is
generated.

⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

Procs 12

This method is called on mixin/instmixin definition calls, istype, ismixin,
class, superclass and parameterclass

Return: empty string

Class: Object
Class: Class
Procs/Instprocs: abstract, append, array, autoname, check, class, cleanup, configure, contains,
copy, destroy, eval, exists, extractConfigureArg, filter, filterguard, filtersearch, forward,
getExitHandler, hasclass, incr, info, instvar, invar, isclass, ismetaclass, ismixin, isobject, istype,
lappend, mixin, move, noinit, parametercmd, proc, procsearch, requireNamespace, set,
setExitHandler, subst, trace, unset, uplevel, upvar, volatile, vwait.

Description: This class holds the pre-defined methods available for all XOTcl objects. All these
methods are also available on classes.

Instprocs

abstract methtype methodName arglist

Arguments: methtype: instproc or proc

methodName: name of abstract method

arglist: arguments

Description: Specify an abstract method for class/object with arguments. An abstract
method specifies an interface and returns an error, if it is invoked directly.
Sub-classes or mixins have to override it.

Return: error

⋅

append varName args

Arguments: varName: name of variable

args: arguments to append

Description: Append all of the value arguments to the current value of variable varName.
Wrapper to the same named Tcl command (see documentation of Tcl
command with the same name for details).

Return: empty string

⋅

array opt array ?args?

Arguments: opt: array option

array: array name

?args?: args of the option

⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

 Class: Object 13

Description: This method performs one of several operations on the variable given by
arrayName. It is a wrapper to the same named Tcl command (see
documentation of Tcl command with the same name for details).

Return: diverse results

autoname ?|? name

Arguments: ?|?: Optional modifiers:
'-instance' makes the autoname start with a small letter.
'-reset' resets the autoname index to 0.

name: base name of the autoname

Description: autoname creates an automatically assigned name. It is constructed from
the base name plus an index, that is incremented for each usage. E.g.:
 $obj autoname a
produces a0, a1, a2, ... Autonames may have format strings as in the Tcl
'format' command. E.g.:
 $obj autoname a%06d
produces a000000, a000001, a000002, ...

Return: newly constructed autoname value

⋅

check options

Arguments: options: none, one or more of: (?all? ?pre? ?post? ?invar? ?instinvar?)

Description: Turn on/off assertion checking. Options argument is the list of assertions, that should be
checked on the object automatically. Per default assertion checking is turned off.
Examples:
 o check {}; # turn off assertion checking on object o
 o check all; # turn on all assertion checks on object o
 o check {pre post}; # only check pre/post assertions

Return: empty string

⋅

class newClass

Arguments: newClass: ?new class?

Description: Changes the class of an object dynamically to newClass. The method
returns the current value of class, when it is called without arguments.

Return: if newClass is not specified return class, otherwise empty

⋅

cleanup ?args?

Arguments: ?args?: Arbitrary arguments passed to cleanup

Description: Resets an object or class into an initial state, as after construction. Called
during recreation process by the method 'recreate'

Return: empty string

⋅

configure ?args?⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 14

Arguments: ?args?: '-' method calls

Description: Calls the '-' (dash) methods. I.e. evaluates arguments and calls everything
starting with '-' (and not having a digit a second char) as a method. Every list
element until the next '-' is interpreted as a method argument. configure is
called before the constructor init during initialization and recreation. In the
following example, the variable set is called via configure before init:
 Object o -set x 4
The method configure can be called with the dash-notation at arbitrary
times:
 o configure -set x 4
Note, that if '-' is followed by a numerical, the arument is interpreted as a
negative number (and not as a method). If a value of a method called this
way starts with a "-", the call can be placed safely into a list (e.g. "Class c
[list -strangearg -a-] -simplearg 2").

See also create.

Return: number of the skipped first arguments

contains ?-withnew? ?-object? ?-class? cmd

Arguments: ?-withnew?: Option to overload new to create new objects within the
specified object. Per default, this option is turned on.

?-object?: object, in which the new objects should be created. The default
is the object, for which contains>/tt> was called.

?-class?: In combination with option -object: If the specified object does not
exist, create it from the specified class. The default is ::xotcl::Object

cmd: Tcl command to create multiple objects

Description: This method can be used to create nested object structures with little
syntactic overhead. The method changes the namespace to the specified
object and creates objects there. Optionally, a different object scope can be
specified and creating new objects in the specified scope can be turned off.
The following command creates a three rectangles, containing some points.
Class Point -parameter {{x 100} {y 300}}
Class Rectangle -parameter {color}

 Rectangle r0 -color pink -contains {
 Rectangle r1 -color red -contains {
 Point x1 -x 1 -y 2
 Point x2 -x 1 -y 2
 }
 Rectangle r2 -color green -contains {
 Point x1
 Point x2
 }
 }
The resulting object structure looks like in the folloing example (simplified).
 ::r0
 ::r0::r1

⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 15

 ::r0::r1::x1
 ::r0::r1::x2
 ::r0::r2
 ::r0::r2::x1
 ::r0::r2::x2

Return: number of the skipped first arguments

copy newName

Arguments: newName: destination of copy operation

Description: Perform a deep copy of the object/class (with all information, like class,
parameter, filter, ...) to "newName".

Return: empty string

⋅

destroy ?args?

Arguments: ?args?: Arbitrary arguments passed to the destructor

Description: Standard destructor. Can be overloaded for customized destruction process.
Actual destruction is done by instdestroy. "destroy" in principal does:
 Object instproc destroy args {
 [my info class] instdestroy [self]
 }

Return: empty string

⋅

eval args

Arguments: args: cmds to eval

Description: Eval args in the scope of the object. That is local variables are directly
accessible as Tcl vars.

Return: result of cmds evaled

⋅

extractConfigureArg al name ?cutTheArg?

Arguments: al: Argument List Name

name: Name of the configure argument to be extracted (should start with '-')

?cutTheArg?: if cutTheArg not 0, it cut from upvar argsList, default is 0

Description: Check an argument list separated with '-' args, as for instance configure
arguments, and extract the argument's values. Optionally, cut the whole
argument.

Return: value list of the argument

⋅

exists var

Arguments: var: variable name

Description: Check for existence of the named instance variable on the object.

⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 16

Return: 1 if variable exists, 0 if not

filter ?args?

Arguments: ?args?: filter specification

Description: If $args is one argument, it specifies a list of filters to be set. Every filter
must be an XOTcl proc/instproc within the object scope. If $args it has more
argument, the first one specifies the action. Possible values are assign, get,
add or delete, it modifies the current settings as indicated. For more details,
check the tutorial.

Return: if $args return empty current filters, otherwise empty

⋅

filterguard filterName guard

Arguments: filterName: filter name of a registered filter

guard: set of conditions to execute the filter

Description: Add conditions to guard a filter registration point. The filter is only executed,
if the guards are true. Otherwise we ignore the filter. If no guards are given,
we always execute the filter.

Return: an empty string

⋅

filtersearch methodName

Arguments: methodName: filter method name

Description: Search a full qualified method name that is currently registered as a filter.
Return a list of the proc qualifier format: 'objName|className proc|instproc
methodName'.

Return: full qualified name, if filter is found, otherwise an empty string

⋅

forward methodName ?options? ?callee? ?args?

Arguments: methodName: name of forwarder method

?options?: -objscope, -methodprefix string, -default names, -earlybinding,
-verbose

?callee?: named of the called command or object

?args?: arguments

Description: Register an object specific method (similar to a proc) for forwarding calls to
a callee (target Tcl command, other object). When the forwarder method is
called, the actual arguments of the invocation are appended to the specified
arguments. In callee an arguments certain substitutions can take place:

%proc: substituted by name of the forwarder method⋅
%self: substitute by name of the object⋅
%1: substitute by first argument of the invocation⋅
{%@POS value}: substitute the specified value in the argument list
on position POS, where POS can be a positive or negative integer or

⋅

⋅

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 17

end. Positive integers specify the position from the begin of the list,
while negative integer specify the position from the end.
{%argclindex LIST}: take the nth argument of the specified list as
substitution value, where n is the number of arguments from the
invocation.

⋅

%%: a single percent.⋅
%Tcl-command: command to be executed; substituted by result.⋅

Additionally each argument can be prefixed by the positional prefix %@POS
(note the delimiting space at the end) that can be used to specify an explicit
position. POS can be a positive or negative integer or the word end. The
positional arguments are evaluated from left to right and should be used in
ascending order. valid Options are:

-objscope causes the target to be evaluated in the scope of the
object,

⋅

-methodprefix string inserts the specified prefix in front of the second
argument of the invocation,

⋅

-default is used for default method names (only in connection with
%1)

⋅

-earlybinding: look up the function pointer of the called Tcl command
at definition time of the forwarder instead of invocation time. This
option should only be used for calling C-implemented Tcl commands,
no procs etc.);

⋅

-verbose⋅

: print the substituted command to stderr before executing

See tutorial for detailed examples. Return: empty

hasclass ?className?

Arguments: ?className?: name of a class to be tested

Description: Test whether the argument is either a mixin or instmixin of the object or if it is on the
class hierarchy of the object. This method combines the functionalities of istype and
ismixin.

Return: 1 or 0

•

incr varName ?increment?

Arguments: varName: variable name

?increment?: value to increment

Description: Increments the value stored in the variable whose name is varName. The new
value is stored as a decimal string in variable varName and also returned as result.
Wrapper to the same named Tcl command (see documentation of Tcl command
with the same name for details).

Return: new value of varName

•

info args•

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 18

Arguments: args: info options

Description: Introspection of objects. The following options can be specified:
objName info args method: Returns the arguments of the specified proc (object
specific method).

•

objName info body method: Returns the body of the specified proc (object specific
method).

•

objName info class: Returns the name of the class of the current object.•
objName info children ?pattern?: Returns the list of aggregated objects with fully
qualified names if pattern was not specified, otherwise it returns all children where
the object name matches the pattern.

•

objName info commands ?pattern: Returns all commands defined for the object if
pattern was not specified, otherwise it returns all commands that match the pattern.

•

objName info default method arg var: Returns 1 if the argument arg of the proc
(object specific method) method has a default value, otherwise 0. If it exists the
default value is stored in var.

•

objName info filter: Returns a list of filters. With -guard modifier all filterguards are
integrated (objName info filter -guards). With -order modifier the order of filters
(whole hierarchy) is printed.

•

objName info filterguard name: Returns the guards for filter identified by name.•
objName info forward ?-definition name? ?pattern?: Returns the list of forwarders.
One can call this method either without the optional arguments, or with the pattern
or with -definition name. When the pattern is specified only the matching forwarders
are returned. When the definition option is used together with a name of a
forwarder, the definition of the forwarder with all flags is returned in a way that can
be used e.g. for registering the forwarder on another object.

•

objName info hasNamespace: From XOTcl version 0.9 on, namespaces of objects
are allocated on demand. hasNamespace returns 1, if the object currently has a
namespace, otherwise 0. The method requireNamespace can be used to ensure
that the object has a namespace.

•

objName info info: Returns a list of all available info options on the object.•
objName info invar: Returns object invariants.•
objName info methods: Returns the list of all methods currently reachable for
objName. Includes procs, instprocs, cmds, instcommands on object, class hierarchy
and mixins. Modifier -noprocs only returns instcommands, -nocmds only returns
procs. Modifier -nomixins excludes search on mixins.

•

objName info mixin ?-order? ?-guard? ?pattern?: Returns the list of mixins of the
object. With -order modifier the order of mixins (whole hierarchy) is printed. If -guard
is specified, the mixin guards are returned. If pattern is specified and it contains
wildcards, all matching mixins are returned. If pattern does not contain wildcards,
either the fully qualified name is returned, or empty, if no match exists.

•

objName info nonposargs methodName: Returns non-positional arg list of
methodName

•

objName info parametercmd ?pattern?: Returns a list of registered parametercmds
the object (or empty if there are none). If pattern is specified, only the matching
parametercmds are returned.

•

objName info parent: Returns parent object name (or "::" for no parent), in fully
qualified form.

•

objName info post methodName: Returns post assertions of methodName.•
objName info pre methodName: Returns pre assertions of methodName.•

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 19

objName info procs ?pattern?: Returns all procs defined for the object if pattern was
not specified, otherwise it returns all procs that match the pattern.

•

objName info precedence ?-intrinsic? ?pattern?: Returns all classes in the
precedence order from which the specified object inherits methods. If the flag
-intrinsic is specified only the intrinsic classes (from the class hierarchy) are
specified. If the flag is not specified, the returned list of classes contains the mixin
and instmixin classes as well as the classes of the superclass chain in linearized
order (i.e., duplicate classes are removed). If the pattern is specified, only matching
classes are returned.

•

objName info vars ?pattern?: Returns all variables defined for the object if pattern
was not specified, otherwise it returns all variables that match the pattern.

•

Return: Value of introspected option as a string.

instvar v1 ?v2...vn?

Arguments: v1: name of instance variable

?v2...vn?: optional other names for instance variables

Description: Binds an variable of the object to the current method's scope. Example:
 kitchen proc enter {name} {
 my instvar persons
 set persons($name) [clock seconds]
 }
Now persons can be accessed as a local variable of the method.
A special syntax is: {varName aliasName} . This gives the variable with the name
varName the alias aliasName. This way the variables can be linked to the methods
scope, even if a variable with that name already exists in the scope.

Return: empty string

•

invar invariantList

Arguments: invariantList: Body of invariants for the object

Description: Specify invariants for the objects. All assertions are a list of ordinary Tcl conditions.

Return: empty string

•

isclass ?className?

Arguments: ?className?: name of a class to be tested

Description: Test whether the argument (or the Object, if no argument is specified) is an existing
class or not.

Return: 1 or 0

•

ismetaclass ?metaClassName?

Arguments: ?metaClassName?: name of a metaclass to be tested

Description: Test whether the argument (or the Object, if no argument is specified) is an existing
metaclass or not.

•

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 20

Return: 1 or 0

ismixin ?className?

Arguments: ?className?: name of a class to be tested

Description: Test whether the argument is a mixin or instmixin of the object.

Return: 1 or 0

•

isobject objName

Arguments: objName: string that should be tested, whether it is a name of an object or not

Description: Test whether the argument is an existing object or not. Every XOTcl object has the
capability to check the object system.

Return: 1 or 0

•

istype className

Arguments: className: type name

Description: Test whether the argument is a type of the object. I.e., 1 is returned if className is
either the class of the object or one of its superclasses.

Return: 1 or 0

•

lappend varName args

Arguments: varName: name of variable

args: elements to append

Description: Append all the specified arguments to the list specified by varName as separated
elements (typically separated by blanks). If varName doesn't exist, it creates a list
with the specified values (see documentation of Tcl command with the same name
for details).

Return: empty string

•

mixin ?args?

Arguments: ?args?: mixin specification

Description: If $args is one argument, it specifies a list of mixins to be set. Every mixin must be a
defined class. If $args has more argument, the first one specifies the action.
Possible values are assign, get, add or delete, it modifies the current settings as
indicated. For more details, check the tutorial.

Return: if $args empty return current mixins, otherwise empty

•

move newName

Arguments: newName: destination of move operation

Description: Perform a deep move of the object/class (with all information, like class, parameter,
filter, ...) to "newName". Note that move is currently implemented as a copy plus

•

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 21

subsequent destroy operation.

Return: empty string

parametercmd name

Arguments: name: variable to be provided with getter/setter method

Description: Add a getter/setter for an instance variable with the specified name as a command
for the obj. Example:
 Object o
 o parametercmd x
 o x 100
 puts [o x]

Return: empty string

•

noinit

Description: flag that constructor (method init) should not be called. Example:
 Class C
 C instproc init {} {puts hu}
 C c1 -noinit
The object c1 will be created without calling the constructor. This can be used to
draw a snapshot of an existing object (using the serializer) and to recreate it in
some other context in its last state.

Return: empty string

•

proc name ?non-pos-args? args body ?preAssertion? ?postAssertion?

Arguments: name: method name

?non-pos-args?: optional non-positional arguments

args: method arguments

body: method body

?preAssertion?: optional assertions that must hold before the proc executes

?postAssertion?: optional assertions that must hold after the proc executes

Description: Specify a method in the same style as Tcl specifies procs.
Optionally assertions may be specified by two additional arguments. Therefore, to
specify only post-assertions an empty pre-assertion list must be given. All
assertions are a list of ordinary Tcl conditions.
When instproc is called with an empty argument list and an empty body, the
specified instproc is deleted.

Return: empty string

•

procsearch procName

Arguments: procName: simple proc name

Description:

•

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 22

Search which method should be invoked for an object and return the fully qualified
name of the method as a list in proc qualifier format: 'objName|className
proc|instproc|forward|instforward|parametercmd|instparametercmd|cmd|instcmd
methodName'. The proc qualifier format reports the command used to create the
method. The only exception is instcmd and cmd, which refer to commands
implemented in C. E.g.,
 o procsearch set
returns
::xotcl::Object instcmd set
.

Return: fully qualified name of the searched method or empty string if not found

requireNamespace

Description: The method requireNamespace can be used to ensure that the object has a
namespace. Namespaces are created automatically by XOTcl, when e.g. an object
has child objects (aggregated objects) or procs. The namespace will be used to
keep instance variables, procs and child objects. To check, whether an object
currently has a namespace, info hasNamespace can be used. Hint: In versions prior
to XOTcl 0.9 all XOTcl objects had their own namespaces; it was made on demand
to save memory when e.g. huge numbers of objects are created.
requireNamespace is often needed when e.g. using Tk widgets when variables are
to be referenced via the namespace (with ... -variable [self]::varName ...).

Return: empty string

•

set varName ?value?

Arguments: varName: name of the instance variable

?value?: optional new value

Description: Set an instance variable in the same style as Tcl sets a variable. With one
argument, we retrieve the current value, with two arguments, we set the instance
variable to the new value.

Return: Value of the instance variable

•

subst options string

Arguments: options: ?-nobackslashes? ?-nocommands? ?-novariables?

string: string to be substituted

Description: Perform backslash, command, and variable substitutions in the scope of the given
object (see documentation of Tcl command with the same name for details).

Return: substituted string

•

trace varName

Arguments: varName: name of variable

Description: Trace an object variable (see documentation of Tcl command with the same name
for details).

•

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 23

Return: empty string

unset ?-nocomplain? v1 ?v2...vn?

Arguments: ?-nocomplain?: possible error messages are suppressed

v1: Variable to unset

?v2...vn?: Optional more vars to unset

Description: The unset operation deletes one or optionally a set of variables from an object.

Return: empty string

•

uplevel ?level? command ?args?

Arguments: ?level?: Level

command ?args?: command and arguments to be called

Description: When this method is used without the optional level, it is a short form of the Tcl
command
 uplevel [self callinglevel] command ?args?
When it is called with the level, it is compatible with the original Tcl command.

Return: result of the command

•

upvar ?level? otherVar localVar ?otherVar localVar?

Arguments: ?level?: Level

otherVar localVar: referenced variable and variable in the local scope

?otherVar localVar?: optional pairs of referenced and local variable names

Description: When this method is used without the optional level, it is a short form of the Tcl
command
 upvar [self callinglevel] otherVar localVar ?...?
. When it is called with the level, it is compatible with the original Tcl command.

Return: result of the command

•

vwait varName

Arguments: varName: name of variable

Description: Enter event loop until the specified variable is set (see documentation of Tcl
command with the same name for details).

Return: empty string

•

volatile

Arguments: :

Description: This method is used to specify that the object should be deleted automatically,
when the current Tcl-proc/object-proc/instproc is left. Example:
 set x [Object new -volatile]

•

XOTcl - Documentation -- ./doc/langRef.xotcl

Instprocs 24

Return: empty string

Procs

getExitHandler

Description: Retrieve the current exit handler procedure body as a string.

Return: exit handler proc body

⋅

setExitHandler body

Arguments: body: procedure body

Description: Set body for the exit handler procedure. The exit handler is executed when
XOTcl is existed or aborted. Can be used to call cleanups that are not
associated with objects (otherwise use destructor). On exit the object
destructors are called after the user-defined exit-handler.

Return: exit handler proc body

⋅

Back to index page.

XOTcl - Documentation -- ./doc/langRef.xotcl

Procs 25

	XOTcl - Documentation -- ./doc/langRef.xotcl

